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OF A CONTINUOUS CURVE1 

F. B. JONES 

Many of the definitions and results concerning connected im 
kleinen continua become useful only when these continua are lo­
cally compact. This is especially true in the cyclic element theory. 
For if a continuous curve M is not locally compact, it is not neces­
sarily true that a simple closed curve in M belongs to a cyclic element 
of M. Furthermore, if a continuous curve M is not locally compact, 
it is not necessarily true that a simple closed curve in M belongs to a 
simple link in M. However, if I f is a continuous curve, there are in M 
certain subcontinua which strongly resemble both cyclic elements and 
simple links such that if J is a simple closed curve in M, one of them 
contains J. I t is the purpose of this paper to define these sets, to de­
velop a few of their properties, and to show how they are of consider­
able interest in spaces where the Jordan curve theorem holds true. 

1. Results for complete Moore spaces. In this section it is assumed 
that 5, the set of all points, is a complete Moore space, that is, 
Axioms 0 and 1 of R. L. Moore's Foundations of Point Set Theory2 

hold true in 5. 

DEFINITION. Suppose that K is a nondegenerate subset of a continu­
ous curve M such that (1) if A and B are distinct points of K> there 
exists a simple closed curve lying in M and containing A +B, and (2) if 
X is a point of M — K, there is some point O of K such that no simple 
closed curve lying in M contains both X and O. The set K is said to be a 
ucyclic nucleus"* of M. 

1 Presented to the Society, December 28, 1939. 
2 American Mathematical Society Colloquium Publications, vol. 13, New York, 

1932. Hereinafter, this book will be referred to as Foundations. The reader is referred 
to Foundations for the definition of terms used, but not specifically defined, here. 

3 A continuous curve is defined to be a connected im kleinen continuum. It need 
not be locally compact. It is easy to see with the help of Theorems 118 and 120 in 
Chapter I and the arguments for Theorems 6 and 7 in Chapter II of Foundations 
that if a nondegenerate continuous curve M is regarded as a space and the term 
"region" is interpreted to mean a connected open subset of M, then with respect to 
this interpretation of "point" and "region," Axioms 0 , 1 , and 2 of Foundations hold 
true in M and "limit point" is invariant under this change. Hence, it is possible to 
apply certain theorems found in Chapter II of Foundations and elsewhere to continu­
ous curves. For example, any two points of a connected open subset D of a continuous 
curve are the extremities of an arc lying wholly in D. 
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THEOREM l . If K is a cyclic nucleus of a continuous curve M, and 
A B is an arc which lies in M and whose end points belong to K, then AB 
is a subset* of K. 

PROOF. Suppose that O is any point of K and that X is a point of 
AB. There exist in M simple closed curves J A and JB containing 
O+A and O+B respectively. Let H denote AB+JA+JB. It is easy 
to see that H is a compact continuous curve and that no point sepa­
rates O from X in H. By Theorem 40 on page 124 of Foundations, 
H contains a simple closed curve containing O+X. Hence X belongs 
toK. 

THEOREM 2. If K is a cyclic nucleus of a continuous curve My and 
AB is an arc which lies in M and whose end points belong to TE, then 
AB — (A+B) is a subset of K. 

PROOF. Suppose that X is a point of AB — (A +B). There exist two 
mutually exclusive connected open subsets DA and DB of M which 
contain A and B respectively such that neither contains X. Since both 
DA and DB contain points of K, DA+AB+DB contains an arc A'B' 
whose end points A' and B' belong to KDA and KDB respectively. 
But A'B' must contain X. Hence, by Theorem 1, X belongs to K. 

THEOREM 3. If K is a cyclic nucleus of a continuous curve M, and J 
is a simple closed curve lying in M and containing more than one point 
of ~K, then J is a subset of K. 

Theorem 3 follows at once from Theorem 2. 

THEOREM 4. If K is a cyclic nucleus of a continuous curve M> then 
neither K nor K contains a cut point of itself. 

Theorem 4 may be established with the help of Theorem 3. 

THEOREM 5. If K\ and K2 are cyclic nucleae of a continuous curve M, 
and 5 \ and Kz are identical, then K\ and Ki are identical. 

PROOF. If X is a point of K\, X is a subset of a simple closed curve J 
lying in K\. Hence J is a subset of K2. By Theorem 3, / is a subset of 
ÜT2, and X belongs to K2. Likewise, any point of K2 is a point of Ki. 

4 A subset K of a continuous curve M which contains every arc in M whose end 
points belong to K has been called a basic set of M. See W. L. Ayres, Concerning the 
arc-curves and basic sets of a continuous curve, Transactions of this Society, vol. 30 
(1928), pp. 567-578, and Concerning the arc-curves and basic sets of a continuous curve, 
second paper, Transactions of this Society, vol. 31 (1929), pp. 595-612. 
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THEOREM 6. If Kis a cyclic nucleus of a continuous curve M, and C 
is a component of M—Ky then C has at most one boundary point in Z\5 

PROOF. I t follows from Theorem 2 on page 89 of Foundations that 
C is a connected open subset of M. Suppose that C has two boundary 
points in K. Using the theorem just referred to, it is easy to see that 
M contains an arc AB such that (1) AB — (A+B) is a subset of C 
and (2) both A and B belong to K. By Theorem 2fAB-(A +B) be­
longs to K, which is a contradiction. 

THEOREM 7. If K is a cyclic nucleus of a continuous curve M> and X 
is a point of M — K, then there is at most one point O of K such that some 
simple closed curve in M contains O+X. 

PROOF. If X is not a point of K, the conclusion of Theorem 7 fol­
lows from Theorem 6. If X is a point of K and a simple closed curve 
in M contains X and a point O of K, then by Theorem 3, X belongs 
to K, which is a contradiction. 

THEOREM 8. If K is a cyclic nucleus of a continuous curve M, and D 
is a connected open subset of M containing a point of K} then both D • K 
and D • l£ are connected.6 

PROOF. Suppose that either DK or D~K is not connected. Then 
it is the sum of two mutually separate sets, Kx and K2. Let AB denote 
an arc in D from a point of Ki to a point of K2. By Theorem 2, 
AB — (A+B) is a subset of K. This involves a contradiction. 

THEOREM 9. If Kis a cyclic nucleus of a continuous curve M, ÏT is a 
nondegenerate continuous curve which contains no cut point of itself. 

Theorem 9 may be proved with the help of Theorems 4 and 8. 

THEOREM 10. If Ki and K2 are cyclic nucleae of a continuous curve 
My then either K\ and K2 are identical or ~Ki and K2 have at most one 
point in common. 

PROOF. Suppose that Zi contains two points of iT2. Then it is evi­
dent from Theorems 4 and 6 that Xi is a subset of JK2. Conversely, 
Ki is likewise a subset of K\. Hence ]?i and J?2 are identical. By Theo­
rem 5, K\ and K2 are identical. 

5 Cf. G. T. Whyburn, Cyclicly connected continuous curves, Proceedings of the Na­
tional Academy of Sciences, vol. 13 (1927), p. 33, Theorem 2. 

6 If the word "open" is omitted from the statement of Theorem 8, the resulting 
proposition is false. Cf. G. T. Whyburn, Concerning the structure of a continuous curve, 
American Journal of Mathematics, vol. 50 (1928), p. 191, Theorem 30. 
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THEOREM 11. If J is a simple closed curve lying in a continuous 
curve My then there exists one and only one cyclic nucleus of M contain­
ing^ J. 

PROOF. Let G denote the collection of all subsets k of M such that 
(1) k contains / and (2) every two points of k belong to a simple 
closed curve in M. Let K denote G* (that is, the sum of the elements 
of G) and let A and B denote two distinct points of J. If X and Y 
are two distinct points of K, there exist in M simple closed curves 
J AX, JBX, JAY, and J BY which contain A+X, B+X, A + Y, and 
B+ Y respectively. Then JAX+JBX+JAY+JBY is a compact continu­
ous curve no point of which separates X from F; hence it contains a 
simple closed curve C containing X+Y. Consequently K is an ele­
ment of G. 

Suppose that K is not a cyclic nucleus of M. Then M — K contains 
a point X such that if O is a point of K, M contains a simple closed 
curve Jox containing both 0 and X. Again let A and B denote dis­
tinct points of / , and let J AX and JBX denote simple closed curves 
lying in M and containing A+X and B+X respectively. Then 
k=J+JAx + JBx is a compact continuous curve containing no cut 
point of itself, and every two of its points belong to a simple closed 
curve in k which is a subset of M. Hence k is an element of G. But 
this involves a contradiction. Therefore K is a cyclic nucleus of M 
which contains J . By Theorem 10, no other cyclic nucleus of M 
contains J". 

THEOREM 12. In order that a set K be a cyclic nucleus of a continu­
ous curve Mj it is necessary and sufficient that K consist of two points A 
and B which belong to a simple closed curve in M together with all other 
points X such that (1) some simple closed curve lying in M contains 
A+X and (2) some simple closed curve lying in M contains B+X. 

PROOF. I t is easily seen from Theorem 7 and the definition of a 
cyclic nucleus of a continuous curve that the condition is necessary. 
The condition is also sufficient. For let / denote a simple closed curve 
in M containing A +B and let H denote the cyclic nucleus of M which 
contains / . Then H is a subset of K. But it is clear from Theorem 7 
that K is a subset of H. Hence K is a cyclic nucleus of M. 

THEOREM 13. If A, B and X are three points of a cyclic nucleus K 

7 Cf. G. T. Whyburn, Cyclicly connected continuous curves, loc. cit., p. 34, Theorem 
3. 
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of a continuous curve M, then there exists in K a simple closed curve 
containing A+B+X. 

PROOF. Let / denote a simple closed curve in K containing A +B. 
If X does not belong to / , let J A and JB denote simple closed curves 
in M containing A +X and B+X respectively. Suppose that neither 
J A nor JB intersects / in more than one point. Let AB denote an arc 
of / f r o m A to B. The set AB+JA+JB is a compact continuous curve 
no point of which separates A from B. By Theorem 40 of page 124 of 
Foundations, AB+JA+JB contains a simple closed curve C contain­
ing A +B. Evidently C intersects each of the curves JA and JB in 
more than one point. So in any case there exist a simple closed curve 
Ji in M containing A +B and a simple closed curve Ji in M contain­
ing X such that J2 intersects J\ in more than one point. Let T denote 
the component of Ji — Jv Ji which contains X. Since T is an arc seg­
ment, it is easy to see that Ji + T contains a simple closed curve Jz 
containing A +B+X. By Theorem 3, Jz is a subset of K. 

THEOREM 14. In order that a set K of more than two points be a cyclic 
nucleus of a continuous curve M, it is necessary and sufficient that K 
consist of two points A and B together with all points X such that some 
simple closed curve lying in M contains A+B+X. 

Theorem 14 follows from Theorems 12 and 13. 

DEFINITIONS. A nondegenerate continuous curve M is said to be "al­
most cyclicly connected" provided that, if A and B are distinct points 
of My and RA and RB are regions containing A and B respectively, then 
M contains a simple closed curve containing both a point of RA and a 
point of RB> A subset H of a continuous curve M is said to be an "almost 
cyclic element" of M provided that (1) H is either a cut point or an end 
point of M or (2) H is a nondegenerate almost cyclicly connected con­
tinuous curve which is a subset of M but which is not a proper subset of 
any other almost cyclicly connected continuous curve which is a subset* 
ofM. 

THEOREM 15. If K is a cyclic nucleus of a continuous curve M, then 
K is a nondegenerate almost cyclic element of M. 

PROOF. By Theorem 9, X is a nondegenerate continuous curve. 
Since every two points of K lie together in a simple closed curve 
which is a subset of K, it is evident that K is almost cyclicly con-

Cf. G. T. Whyburn, Concerning the structure of a continuous curve, loc. cit., p. 167. 
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nected. Furthermore, it is clear from Theorem 6, that X is not a 
proper subset of an almost cyclicly connected continuous curve lying 
in M. Hence T£ is an almost cyclic element of M. 

THEOREM 16. If H is a nondegenerate almost cyclic element of a con­
tinuous curve M, then M contains one and only one cyclic nucleus K such 
thatK=H. 

PROOF. Let / denote a simple closed curve lying in H. By Theorem 
11, M contains one and only one cyclic nucleus K containing J. If H 
is not a subset of ÏT, then it follows from Theorem 6 that H contains 
a cut point of itself. This is impossible. Hence H is a subset of K. 
But by Theorem 15, TL is an almost cyclicly connected continuous 
curve. Consequently, H is not a proper subset of K. 

THEOREM 17. No two almost cyclic elements of a continuous curve M 
have more than one point in common. 

THEOREM 18. If J is a simple closed curve lying in a continuous 
curve M} then one and only one almost cyclic element of M contains the 
curve J. 

DEFINITIONS. Suppose that P is a point of a continuum M and there 
do not exist two points A and B of M such that (1) P separates A from B 
in M and (2) P is the only point of M which separates A from B in M. 
Let K denote the set of all points X of M such that no point separates P 
from X in M. Then K will be called a "simple link of M" and P will be 
called a "proper point of M."9 

THEOREM 19. Every nondegenerate simple link of a continuous curve 
M is an almost cyclic element10 of M. 

PROOF. Suppose that K is a nondegenerate simple link of M. Let A 
and B denote two distinct points of K and let AXB denote an arc in 
M from A to B containing a point X distinct from A and B. The arc 
AXB belongs to Ky and X does not separate A from B in K. Hence 
there exists in M — X an arc AfB' having only its end points A' 
and B' in AXB. Let J denote the simple closed curve contained in 
AXB+A ' +B'. Obviously J is a subset of K. By Theorem 18, M con­
tains one and only one almost cyclic element H containing J. Since 
no two points of K are separated in M by any point of Ky it follows 
from Theorems 6 and 16 that if is a subset of H. On the other hand, 
K contains a point P together with all other points X of M such that 

9 See pages 63 and 72 of Foundations. 
10 Cf. Theorem 68 on page 148 of Foundations. 
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X is not separated in M from P by a point of M. Since fZ" contains P 
and no cut point of itself, it is a subset of K. Consequently K is 
identical with H. 

THEOREM 20. Every simple link of a continuous curve is itself a con­
tinuous curve.ll 

THEOREM 21. If a nondegenerate almost cyclic element H of a con­
tinuous curve M contains a proper point of M, then His a simple link12 

ofM. 

PROOF. If H contains a proper point P of M, then by Theorem 94 
on page 68 of Foundations M contains one and only one simple link K 
containing P. Evidently every point of H belongs to K. I t follows 
from Theorems 17 and 19 that H and K are identical. 

EXAMPLE. An almost cyclic element of a continuous curve M need not 
contain a proper point of M. Suppose that E is an euclidean 3-space. 
Let H denote all points (X, F, 0) of E such that X2+ F2 = 1 and let W 
denote all points (X, F, Z) of E such that X 2 + F 2 > 1 . Now let M 
denote H+ Wand define "region" in M as follows: (1) if R is a region 
in E containing a point of H, then RM shall be called a "region" 
in M and (2) if (X, F, Z) is a point of W and R is a circular region of 
the plane Yx — Xy = 0 containing (X, F, Z) such that R contains no 
point of iJ, then RM shall be called a "region" in M. The space M 
satisfies Axioms 0-2 of Foundations. Consequently M is a continuous 
curve lying in a complete Moore space. I t is clear that H is an almost 
cyclic element of M which contains no proper point of M. 

With the theorems and proofs of the preceding pages in mind the 
reader will find it possible to establish many results for almost cyclic 
elements of a continuous curve in a complete Moore space analogous 
to those in the literature13 for cyclic elements of a continuous curve 
in an euclidean w-space by slight changes in the original arguments. 
For certain results, such as those concerning the number of nondegen­
erate cyclic elements, it is obviously necessary in complete Moore 
spaces to assume that the continuous curves involved are separable. 
One theorem of considerable interest is as follows: Suppose that M is 
a continuous curve in a complete Moore space. If the almost cyclic ele­
ments of M are regarded as "points" and two such "points" p and q are 

11 Cf. Theorem 66 on page 147 of Foundations. 
12 Cf. Theorem 69 on page 149 of Foundations. 
13 Especially those of the references which have been given in the footnotes of this 

paper. 
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regarded as contiguous if and only if one of the two continua p and q is a 
point of the other, then the set of all such "points" is an acyclic continu­
ous curve.u 

2. Spaces in which the Jordan curve theorem holds true. The next 
two theorems are obtained by a simple application of the preceding 
results to spaces in which the Jordan curve theorem holds true. 

THEOREM 22. Suppose that S is a space satisfying Axioms 0, 1, 2, 
and 4 of Foundations and that H is a nondegenerate almost cyclic ele­
ment of S. If H is regarded as a space and the term "region" is inter­
preted to mean a connected open subset of H, then, with respect to this 
interpretation of "point" and "region" Axioms 0-4 of Foundations are 
satisfied and "limit point" is invariant under this change.1* 

PROOF. By Theorem 9 on page 96 of Foundations, Axioms 0-2 are 
satisfied in i J a n d "limit point" is invariant. It follows from Theorems 
4 and 16 that Axiom 3 is satisfied. If / is a simple closed curve lying 
in H, then S — J is the sum of two connected domains, E and / , each 
having J for its boundary. It follows from Theorems 8 and 16 that 
HE and HI, if not vacuous, are connected open subsets of H. If 
some point P of / is not a limit point of HE, then some segment T 
of J contains P but no point of H- E. There exists an arc segment W 
lying in E whose end points lie in T. By Theorems 2 and 16, W is a 
subset of H. Hence W is in HE, and the end points of W belong to 
both H- E and T, which is a contradiction. Consequently, every point 
of / is a limit point of HE. I t is now evident that / is the boundary 
with respect to H of HE. Likewise J is the boundary with respect to 
H of HI. Hence Axiom 4 holds true in H. 

THEOREM 23. Suppose that S is the set of all points and that Axioms 
0, 1, 2, and 4 of Foundations hold true. Then a nondegenerate simple 
link of S is a nondegenerate almost cyclic element of S and conversely. 

PROOF. It is obvious from Axiom 4 that no point of a simple closed 
curve is a cut point of 5. Hence every point of a simple closed curve 

14 Cf. R. L. Moore, Fundamental theorems concerning points sets, the Rice Institute 
Pamphlet, vol. 23 (1936), pp. 1-74; p. 74 in particular. 

15 AXIOM 2. If P is a point of a region R, there exists a nondegenerate connected 
domain containing P and lying wholly in R. 

AXIOM 3. If O is a point, S — O is connected. 
AXIOM 4. If J is a simple closed curve, S — J is the sum of two mutually separated 

connected point sets such that J is the boundary of each of them. (The Jordan curve 
theorem.) 
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is a proper point of 5. The conclusion of Theorem 23 now follows 
immediately from Theorems 19 and 21. 

I wish to point out that Theorems 22 and 23 shed some light on the 
role played by Axiom 3 in the sequence of axioms in Foundations. A 
space satisfying Axioms 0-4 of Foundations is identical with its one 
almost cyclic element. Hence, by assuming Axiom 3 in addition to 
Axioms 0, 1, 2, and 4 one has merely confined one's investigation to 
a single almost cyclic element of the space. In fact with the preceding 
theorems in mind it is easy to see that many of the theorems in the 
literature which hold true in spaces satisfying Axioms 0-4 also hold 
true in spaces satisfying only Axioms 0, 1, 2, and 4. This is true, for 
instance, of all the theorems in Chapter III of Foundations except 
Theorems 0, 2, 21, 23, and 24. 

T H E UNIVERSITY OF T E X A S 


