THE AUTOMORPHISMS OF THE SYMMETRIC GROUP

IRVING E. SEGAL

The purpose of this note is to give a proof of the following well known theorem. The group of automorphisms of the symmetric group S_n on n letters is isomorphic with S_n , except when n=6. The proofs of this in the literature are complicated and involve the use of lemmas whose relevance is not plain.

Let A be an automorphism of S_n . Then it is clear that A takes a class of similar elements into a class of similar elements, and that it takes an element of order m into an element with the same order. Hence suppose $A(1r) = t_1(r) \cdot t_2(r) \cdot \cdots \cdot t_k(r)$ $(k \ge 1)$, where the $t_i(r)$ are disjoint transpositions. A simple calculation shows that there are n(n-1)/2 elements similar to (1r), and that there are $n!/2^k k! (n-2k)!$ elements similar to $t_1(r) \cdot t_2(r) \cdot \cdots \cdot t_k(r)$. Hence

$$\frac{n(n-1)}{2} = \frac{n!}{2^k k! (n-2k)!}.$$

If $n \neq 6$ this equation is satisfied for no $k \ (k \ge 1)$ except k = 1.

Suppose now that $n \neq 6$. Then $A(1r) = (a_rb_r)$ say. If $r \neq 2$, (12)(1r) = (12r) (multiplying from right to left), and evidently, $A(12r) = (a_2b_2)(a_rb_r)$. Since (12r) has the order 3, so has $(a_2b_2)(a_rb_r)$ and the transpositions (a_2b_2) and (a_rb_r) must have a letter in common. Then it is no loss to assume $a_2 = a_r$ or $b_2 = b_r$. However, if $a_2 = a_r$ and $b_2 = b_s$ $(r \neq 2, s \neq 2)$, then $r \neq s$ and $A(12r) = A(12) \cdot A(1r) = (a_2b_2)(a_2b_r) = (b_ra_2b_2)$. Similarly $A(12s) = (a_sb_2a_2)$. Hence $A((12r) \cdot (12s)) = A(12r) \cdot A(12s) = (b_ra_2b_2)(a_sb_2a_2) = (b_ra_sb_2)$ which is of order 3, while $(12r) \cdot (12s) = (1s)(2r)$, which is of order 2. Hence one must have $a_2 = a_r$ for all r or $b_2 = b_r$ for all r; of course one can let $a_2 = a_r$ $(r = 2, 3, \cdots, n)$. Then $A(1r) = (a_2b_r)$. Hence A is precisely the automorphism A defined by $Ax = t^{-1}xt$, where

$$t = \begin{pmatrix} 1 & 2 & \cdots & r & \cdots & n \\ a_2 & b_2 & \cdots & b_r & \cdots & b_n \end{pmatrix}.$$

For $Ax = t^{-1}xt$ when x = (1r), and the elements $\{(1r)\}$ $(r = 2, 3, \dots, n)$ generate S_n .

YALE UNIVERSITY

¹ The first proof is by O. Hölder, Mathematische Annalen, vol. 46 (1895), especially pp. 340-345.