
ON GREEN'S FUNCTIONS IN THE THEORY 
OF HEAT CONDUCTION* 

H. S. CARSLAW AND J. C. JAEGER 

1. Introduction. In this Bulletin (vol. 44 (1938), p. 125) Lowan 
discusses the Green's function for a line source at (r', 0') for the cases 
where the solid (i) is an infinite cylinder r = a, and (ii) is bounded 
internally by r = ay radiation taking place at r = a into a medium at 
zero temperature. 

He uses the method of the Laplace transformation. The solution 
for the first problem agrees with that already obtained by contour in­
tegration, f There are some obvious misprints in his discussion of the 
second problem, and in his solution on page 133 he seems to have used 
as boundary condition G = 0 on r = a, instead of dG/dr+hG = 0, in his 
notation. His result on that page should read 

1 ^ f °° ff»(1)(ofo) 
G = u + v = — 2 j COS n(e — 0o) I ae-ka l 

47T n a, J -oo Un(oiO) 

• ijn(ar)Un(aa) - Hn^ (ar) \a —Jn{z) + *ƒ»(*)] Ida, 
{ L d% Jz=aa) 

where 

Un(aa) = [ a — Hn™ (s) + hHn™ («)] . 
L UZ Jz=aa 

Put in this form it can be reduced to the simpler form given below in 
(16), except for the difference in the sign of h. 

In this paper we discuss this second problem, first by contour 
integration, and second by the Laplace transform. In the latter we 
use what appears to us a much simpler notation and a more rapid 
approach to the solution. 

We remark also that we have used this notation and method in a 
number of other questions J and believe that it will be found in­
creasingly useful and much simpler than the operational methods, 

* Presented to the Society, September 6, 1938. 
t Carslaw, Conduction of Heat, 2d edition, 1921, §§88, 89. This book will be re­

ferred to below as C.H. 
% Cf. Carslaw, Operational methods in mathematical physics, Mathematical Ga­

zette, vol. 22 (1938), pp. 264-280; Carslaw and Jaeger, Some problems in the mathe­
matical theory of the conduction of heatt Philosophical Magazine, (7), vol. 26 (1938), 
pp. 473-495. 
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due to Heaviside and Bromwich, expounded in Jeffreys' well known 
tract.* 

2. Solution using contour integration. We take the line source at 
(r', 0), and we require the solution of the equation 

dv / d2v 1 dv 1 d2v\ 
(1) — = kl 1 + ), * > 0, r > a, 
W dt \dr2 r dr r2 dB2) 
which shall tend to zero when /—>0 in r>a, except at (V', 0), where 
it is to be infinite as 

(2) (47T&/)-1 exp { - (r2 + r'2 - 2rr' cos d)/4kt}. 

Also, when r—*a, v is to satisfy 

dv 
(3) h hv = 0, / > 0. 

dr 
Let 

(4) u = (Awkt)-1 exp { - (r2 + r'2 - 2rr' cos 6)/4kt} . 

Put v — u-\-w. Then w is to satisfy 

dw (d2w 1 dw 1 d2w\ 
(5) = kl h - H J, / > 0, r > a, 
W dt \dr2 r dr r2 dd2J 
(6) lim w = 0, r > a, 

dw du 
(7) h hw = hu, r = a, t > 0. 

dr or 
It is known f that 

(8) ^ = — X) c o s «0 I 0Le-kahJn{arr)Jn{ar)da 
2TT W=_OO •/ o 

i °° r 
(9) X cos (̂9 ae-ka2tJn(ar')HnW (ar)da, r > r', 

i °° r 
(10) = ^ cos nd \ ae-k«2tJn{ar)IU» (ar')da, r < r', 

47T n^-oo J 
the integrals being taken over the path P of Fig. 1 in the a-plane. 

* Operational Methods in Mathematical Physics, Cambridge Tracts in Mathe­
matics and Mathematical Physics, no. 23. 

t C.H., pp. 184-185. 
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For the path at infinity on the right the argument of 4a is less than 7r, 
and on the left it is greater than Sir. Let 

(11) 4ww = X) COS7Z0 f ae-k«2tAv(a)HnM(ar')HnW(ar)da, 
n=-oo * 

where An(a) is to be chosen so that w satisfies (7). Thus, using (10), 
we have 

(12) An{a)[aHnM'(aa) - hHn™ (aa)] = aJj (aa) - hJn(aa). 

Also 

(13) 4TTV = X) cosw0 f ae-k«2tHnW(ar')[An(a)HnM(ar) - Jn(ar)]da, 

when r<r', and we interchange r and r ' when r>r'. 

O 
FIG. 1 

This value of v satisfies (1) and (3). We shall now show that it 
satisfies (2); in other words, we shall show that lim*_0 ^ = 0, when 
r>a. 

The integral in (11) is continuous when / ^ 0 . We show that it 
vanishes when / = 0. Take the closed circuit of Fig. 2, consisting of 

,y 

+JL 

FIG. 2 

the path P and the part of a circle, center at the origin, lying above 
the path P. 

There are no zeros of aH^ '(aa)—}iH^ (aa) for which the imagi­
nary part of a is positive or zero.* Further the asymptotic expansions 
for the Bessel functions show that the integral 

* See the footnote to §6. 
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(14) f affnU> (of)Fw
(1) (ar')An(a)da 

over the circular arc above P tends to zero when the radius tends to 
infinity. I t follows that the integral over the path P tends to zero. 
We have thus in (14) obtained a solution in the form of an integral 
over the path P . 

3. Consider the closed circuit of Fig. 3, formed by the real axis, 
the path P , and the arcs of a circle with center at the origin and 
radius R (which will tend to oo) joining the real axis and the path P . 

FIG. 3 

When £>0, the integral of §2, (13), 

f ae-k«2tHnM («,') [4n(a)ffnU> (ar) - Jn(ar)]da 

over the circular arcs tends to zero when R—> oo, r being less than r' . 
Also there are no poles of the integrand inside this circuit. I t follows 
that the integral over the path P is equal to minus the integral from 
— oo to oo over the real axis. Thus we have 

(15) 4wv = X) cos 7*0 I ae-k«2tHnM (or7) [Jn(ar) - An(a)Hn™ (ar)]da 
n——co ^ —oo 

when r<rf; and we have to interchange r and r' when r>r'. 

4. If we break up f™* into J2.^ and /0°° and use the formulas 

Hn^(x) =Jn(x) + iYn(x), 

HnW(x) = ƒ „ ' ( * ) + *Fn '(*), 

ein*Hnw (xe™) = HnM(x) - 2Jn(x) = - Jn(x) + iYn(x), 

e^'HnW'ixe*') = ƒ»'(*) - *F»'(*), 

the result in §3, (15), reduces to 

1 °° 
v = — 23 cos n® 

(16) 2W — 
Un(ar)Un(ar') 

-da, I [cJJiaa) - hJn(aa)Y + [aYi (aa) - hYn(aa)Y 
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where 

Un(ar) = Jn(ar)[aYn(aa) — hYn(aa)] — Yn(ar) [oJ»' (aa) — hJn(aa)]; 

and this, being symmetrical in r and r', holds both for r <rf and r>r'. 

5. Solution using the Laplace transformation. We start from equa­
tions (1) to (7) of §2; by equation (8), u is given in the form u = 
^2n^-ooUn cos nd ; so we seek a solution of type 

00 

(17) V = U + W = ^2 (Un + Wn) COS «0, 
n=—oo 

where 

(18) lim wn = 0, r > a, 
*->o 

d2wn 1 dwn n2 1 dwn 

(19) + wn - = 0, 
dr2 r dr r2 k dt 

and the boundary condition (3) is satisfied by (un+wn). Now apply 
the Laplace transformation, using ü, v, • • • for the Laplace trans­
forms of u, v, and so on. Thus,* writing q — (p/k)112, we have 

= f er**udt = { exp - pt (r2 + r'2 - 2rr' cos d)112 

J o 4TkJ0 L Ut J 
1 

= K0[q(r2 + r'2 - 2rr' cos 0)1/2] 
2irk 

dt 

t 

(20) = \ j 

f 1 °° 
— : 23 In(qr)Kn(qr') cos ^0, r < r' 
27T& n^-oo 

— Z) In(qr')Kn(qr) cos «0, r > r', 
Z7T/c w=—oo 

00 

23 ^n COS ^0, 

where the ün are given by (20). Also from (18) and (19) 

d2wn 1 dwn 

dr2 

1 dwn /n2 \ 

* We use successively the results, §6.22, (15), and §11.41, (8), of Watson, Theory of 
Bessel Functions. 
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So wn = Bn(q)Kn(qr), where Bn(q) is to be determined from the surface 
condition (3). This requires 

dv 
(- hv = 0, r == a. 

dr 
Hence, for r<r', 
(21) 2irkBn(q)[hKn(qa) - qKl (qd)\ = [qU (qa) - hIn(qa)]Kn(qr'). 

So 

vn = *» + wn = (l/2irk)Kn(qrf)In(qr) + Bn(q)Kn(qr)y r < r'. 

Therefore, by the inversion formula,* if JJL = (X/fe)l/2, and c > 0 , 

ƒ
» c+ioo 

e"Kn(ixr') [In{nr) + 2irkBn(»)Kn(ixr)]d\, r < r', 
C — ÏCO 

and 
00 

(23) z; = ^2 vn cos w0. 

We have to verify that this value of v satisfies (2) ; that is, that the 
wn satisfy (18). From (21) and the inversion formula, we obtain 

/

• c+ioo 

euKn(^r)Bn(fx)d\y 
c—too 

and this is a continuous function of / for / ^ 0 . To show that it 
vanishes for / = 0, consider the integral 

(24) ƒ Kn(nr)Bn(»)d\ 

taken round the contour ABGA of Fig. 4, consisting of the line joining 
c—iRy c+iRy and a portion of a circle, center the origin, in the right-
hand half-plane. There are no poles of the integrand in the contour.f 
Also, using the asymptotic expansions for the Bessel functions, we 
find that the integral in (24) round the circular arc tends to zero as 
R—>oo. So the integral over the path c—i<x>, c+i<x> vanishes. 

6. To reduce (22) to the form (16), consider the integral of the 
integrand of (22) round the path of Fig. 4 formed by the line AB a t 
distance c from the imaginary axis, the circle V of radius R, the circle 
7 of radius €, and the lines CD, EF, on which arg X = 7r, and —7r, 
respectively. There are no poles of the integrand inside or on the 

* Churchill, Mathematische Zeitschrift, vol. 42 (1937), p. 569. 
t See the footnote to §6. 
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contour.* The integral round y tends to zero as e—>0. Also, using the 
asymptotic expansions of the Bessel functions, we find that the in­
tegral round T tends to zero as R—>oo. So in the limit R—»°o, e—>0, 

F I G . 4 

vn equals the sum of the integrals along CD and EF. Putting X = ka2eir 

in the former, and \ = ka2e~iT in the latter, we obtain, on reduction, 
(16). 

7. The path P of Fig. 1 in the ce-plane corresponds to a path in the 
X-plane (X = — ka2) which starts at infinity where arg X lies between 
— 7T and — 7r/2, passes to the right of the origin, and ends at infinity, 
where arg X lies between TT/2 and T. This is the path V of Jeffreys' 
tract, Operational Methods in Mathematical Physics (2d edition, 1931, 
p. 29) and not the path L (from c — i<x> to c+ioo) as stated by 
Bromwich in the Proceedings of the Cambridge Philosophical Society, 
vol. 20 (1921), p. 412. The connection between the two methods em­
ployed in this paper is thus clear. There may be an advantage in the 
former as it seems to give a simpler verification that the expression as 
found does in fact satisfy all the conditions of the problem. 

T H E UNIVERSITY OF SYDNEY AND 

T H E UNIVERSITY OF TASMANIA 

* To show that zKl (z)—bKn(z), where b>0, has no zeros for R(z) ^ 0 , we may, 
since K-n(z) —Kn(z), take n^O. That there are no real positive zeros follows from the 
recurrence formula and the fact tha t Kn(x)>0 for real positive x. That there 
are no complex zeros follows from the formula (Gray and Matthews, Treatise 
on Bessel Functions, 2d edition, 1922, p. 70, (30)): (\*-ix*)f?xKn(\x)Kn(ixx)dx= 
a[iJLKn(^a)Kn (tJLa) —\Kn(fxa)Kn (Xa)], -R(^+/0 > 0 . To show there are no pure imagi­
nary zeros z = iy, we have iyK.1 (iy) — bKn(iy) — %ivieZnivl2 [ —yJl (y) -\-bJn(y) -\-iy F» (y) 
—ibYn(y)], and the real and imaginary parts of this must vanish. This requires 
My) Yr! (y) - Yn(y)Jn (y) = 0 , but it is 2/iry. 


