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Therefore, k., ==%,, and we have the relation
pm(z) = 2™ "pa(z) = s "(kuz" + Lo).

We have assumed, until now, that the sequence $:(0), $3(0), - - -
contained a nonzero term. If this is not the case, the last result still
holds with # =1, as may be seen from (4) in the same way as before.

Now we have, if m=n, m'2n, m=m’,

+
f@)eitm—m"0| pogn 4 1, |2d0 = 0, z = ¢e?,

-_—

Whence, except on a set of measure zero, we have

(11) f(6) = const. | Enzm 4 l,,l‘z, z = €Y,
We conclude the proof with the obvious remark that the polynomials
1, 2, 22, -+ -, 2»1 are orthogonal on the unit circle |z| =1 with the

weight function (11).
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A FACTORIZATION THEOREM APPLIED TO
A TEST FOR PRIMALITY*

D. H. LEHMER

Certain tests for primality based on the converse of Fermat’s
theorem and its generalizations have been devised and applied by the
writer during the past ten years.t Perhaps the most useful test for the
investigation of a large number N of no special form may be given
as follows:§

THEOREM 1. If N divides a¥—1—1 but is relatively prime to a¥N—Dl»
—1, where p is a prime, then all the possible factors of N are of the form
pex+1, of N—1 is divisible by p*, (a=1).

Strictly speaking this is not a test for primality since the theorem
merely gives a restriction on the factors of N. If p*> N2 then,
obviously, N is a prime. If p2 is only fairly large, the theorem gives

* Presented to the Society, February 26, 1938.

t This Bulletin, vol. 33 (1927), pp. 327-340; vol. 34 (1928), pp. 54-56; vol. 35
(1929), pp. 349-350; vol. 38 (1932), pp. 383-384; vol. 39 (1933), pp. 105-108; Annals
of Mathematics, (2), vol. 31 (1930), pp. 419-448; Journal of the London Mathe-
matical Society, vol. 10 (1935), pp. 162-165; American Mathematical Monthly, vol.
43 (1936), pp. 347-354.

1 This Bulletin, vol. 33 (1927), p. 331,
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a good restriction on the factors of N and a much better restriction
on the values of # in the equation

N =ut— o= (u+1)(u — 9);

infact 2u=N-+1 (mod p2%). If no large divisor p¢of N—1 is known,
it may be necessary to apply Theorem 1 several times and to com-
bine the several restrictions thus obtained. Finally if no divisor p*
(other than the trivial factor p*=2) of N—1 is known, then Theorem
1 tells us nothing at all.

It thus appears that the problem of proving N a prime is closely
allied to the factorization of N —1. In general it is impossible to say
anything about the factors of N—1 beyond the obvious remark that
N —1iseven. In the interesting case where NV is a divisor of a number
of the form y»—1, it is possible to make the factorization of N—1
depend upon the factors* of y*—1, where k <#. It is the purpose of
this note to indicate how this may be done.

To be more specific, let # be a positive integer, and let Q,(x)

=x*+ - .+ be the irreducible polynomial whose roots are the primi-
tive nth roots of unity, so that we have the familiar factorization
(1) y»—1=J10:0),

éln

where 8, as indicated, ranges over all the divisors of #. Then the
factorization of numbers of the form y»—1 depends on the factoriza-
tion of N=Q,(y). If we suspect that N is a prime, it may be tested
for primality provided something is known of the factors of N —1.
Before discussing this topic, we need two lemmas.

LemMma 1.1 If n=sd, where s is the product of all distinct prime fac-
tors of n, and d =1, then

(2) Q:(3) = Qs(»9).
LemMMA 2. If n is not divisible by the prime q, then
3) Qna(y) = Qu(y9)/0x(y).

Both lemmas can be made to follow easily from the familiar}
Dedekind inversion of (1):

* See Cunningham and Woodall, Factorization of y»+1, London, 1925, for exten-
sive tables for y<12. For y>12, see Cunningham, Messenger of Mathematics, vol.
57 (1927), pp. 72-80; see also Kraitchik, Recherches sur la Théorie des Nombres, vol. 2,
Paris, 1929, pp. 84-159.

t Trudi, Annali di Matematica, (2), vol. 2 (1868-1869), pp. 160-162.

1t Journal fiir die reine und angewandte Mathematik, vol. 54 (1857), pp. 25-26.
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4 On(y) = y (ynt — 1)r®,
where u is the Mobius function defined by u(1) =1, and for £>1 by
(k) =(—1)* or zero according as % is a product of % distinct primes
or not.

To prove Lemma 1, we note that u(8) =0, except when § is a divisor
of s. Therefore (4) may be written

0a(») = II {397 — 1}+® = Qu(y7).

dls

Lemma 2 may be established by noting that the divisors of ng are
of the forms 6 and ¢8, where 6 ranges over the divisors of #, so that
(4) becomes in this case

®) Ono(y) = I (ynas — 1)@ T (yn/8 — 1)utad),

8ln éln

Since ¢ does not divide 8, u(gd) = —u(8), and we obtain Lemma 2 at
once on comparing (5) with (4).

Returning to the problem of factoring N—1=0Q,(y)—1 we find
that three cases present themselves according as # has 0, 1, or more
than one odd prime factor.

Case 1. If n=2* we exclude as trivial the cases =1 and 2 in
which Qi(y) =y—1, and Q:(y) =y+1. For n=2 (A\>0), (4) gives

N =Q.(9) = (y» — 1)/(y/2 — 1) = y»/2 4 1;

so the factorization of N —1 is obvious. As a matter of fact, when y is
odd N is oddly even, and we are really concerned with N/2 and hence
with factoring

N/2) = 1= 32 = 1) = 30y = D&+ DO+ -+ G+ 1),

The decomposition of these binomials into their prime factors may be
thought of as known, since their exponents are all considerably less
than n/2.

Case 2. Assume that n=2¢#, A=0, ¢ an odd prime, $=1. In case
A=0, formula (4) gives

N =00y = (y»— D/ - 1).
Hence
N —1=gyr(yt —1)/(y"2 — 1),
where ¢ =¢(n) =n—n/q=q¢*"1(¢g—1). In case A>0, (4) gives
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N =0u(y) = ("2 + 1/(22 4+ 1).
Hence
N — 1 = yr2(ys — 1)/(y"?1 4+ 1),

where, in this case,
¢ = ¢(n) = (n/2) — (n/2q) = 2-1¢F(g — 1).

In either case, then, the factorization of N —1 can be made to depend
on that of binomials of much lower degree. For example, if # =200,

N —1=Qa0(y) —1=9y"0%—1)/(y*°+1) = y*(* + 1(y*° - 1).

Case 3. Assume that # has more than one odd prime factor. The
final case is much more complicated; it is no longer true that all the
prime factors of N —1 divide either y or y»—1 for m <n. However, it
is possible to account in this way for some of the factors of N—1 by
the following theorem:

THEOREM 2. Let N=Q.(y), and write n=ds=qid, where s is the
product of the distinct prime factors of n and q is any prime factor of N;
then N —1 is divisible by y¢ and also by y49=D —1, unless t divides
q—1 in which case N —1 is divisible by the integer (y3e—0 —1)/Q.(v9).

Proor. It is well known that for every s>1, Q.,(0) =1. In other
words Q,(x) —1 is divisible by x. Hence by Lemma 1

(6) N—-1= Qn(y) -1= Q-(y") -1

is divisible* by y4. By Lemma 2, replacing # and y by ¢ and »9¢,
respectively, we may write, in view of (6),

Qu(y?9) — Qu(y%) _

™ N—1=0u(y)— 1=

“ ()
The polynomial Q.(y%)— Q.(y?%) is divisible by y% —4¢ and hence by
yde-D—~1, In fact, if f(x) =as+a1x+ax2+4 - - - is any polynomial,

every term of the difference
fu) — f(v) = ar(u — v) + ax(%® — 22) + a3(u® — 93) + - - -

is divisible by # —v. Now since (7) is an identity in y¢, we may replace
y¢ by 2 and write

®) Qu(z9) — Qu(a) = 2(z=* — 1)P(3),

* Incidentally, N—1 does not contain a higher power of y than y4 since the pen-
ultimate term of Q,(x) is —u(s)x= *x.
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where P(z) is a polynomial with integral coefficients. But the right
member of (8) is algebraically divisible by Q.(z); and since Q.(2) is
irreducible it must divide either 2¢-1—1 or else P(z). By (1) it follows
that z¢1—1 is divisible by Q:(z) if and only if ¢ divides ¢g—1. Hence
the theorem follows at once.

The algebraic factorization of Q,(y) —1 under Case 3 may be given
for a few values of #. By Lemma 1, we may confine ourselves to those
values of #» which are products of distinct primes and since, if % is

odd,

© Qz(%) = Qu(— %),

we take only odd values of #» which have no square factors. For the

first five such values we have

Qu(y) — 1=y —DOG* -y + 1),
Qu(» — 1=y —-DO*+ DG+ y+ 1),
Qs() =1 =y(y"° = DG =y + =¥+ 3 — >+ 1),

(10) Qss(») — 1 = y(»* + DO — (" — y* — y¥ + y2 + y1

—yY+y—-y+1),

y(y = DO+ D0+ D™ — 92 4 y¥ — y%
+ y23 + y20 — y18 + ylﬁ —_— y].4 + ylZ _I_ yll
+y+1).

The use of this table is illustrated by the following examples.

Let N=Q(11)=46 32945 35436 00481. In view of Lemma 1
and (9), we have
Qoo(11) = Q30(11%) = Qus(— 11%).
Substituting y= —112 in (10) we find
N — 1 = 112(118 — 1)(116 + 11 — 1),

Qss(y) — 1

from which we easily obtain the decomposition into primes
N —1=253.5-112-61-7321-1786201.
Choosing »=1786201 for the application of Theorem 1 we find that
20=DIp — 1 = 25 37813 44415 94865 = 4 — 1 (mod N)

and that 4 —1 is prime to N. Furthermore we find that
A7 = 2V-1 =1 (mod N).
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Hence by Theorem 1 the factors of IV are of the form 1786201x-1.
Combining* this with 60x+1 we get a restriction on the factors of N
of the form 107172060x+1. Only two numbers of this form exist
below NY2, namely 107172061 and 214344121. Since neither of these
is a factor of N, it follows that N is a prime.

As a second example consider

N = Q240(2) = 18518 80056 39241 07521.
By Lemma 1 and (9) we have
N = Q240(2) = Q50(2%) = Qus(— 29).
Hence by (10)
N — 1 = 25232 — 1)(22¢ + 216 — 1) = 28.3.5-17-257-65537- 16842751,

the last factor being easily identified as a prime.t Armed with this
complete factorization of N—1 we are now in a position to apply
Theorem 1 to the number N, which has been investigated and de-
clared prime by M. Kraitchik} in 1929 by a plausible though non-
rigorous method.§ It turns out however that the first part of the
hypothesis of Theorem 1 is not satisfied, that is, N does not divide
11¥-1—1, Hence, by Fermat's theorem, N is composite. To settle
this question we applied a new type of machine for combining linear
congruences to the problem of factoring N with the result that

N = 394783681-46908728641.

LeHIGH UNIVERSITY

* Every factor of Q.(y) not dividing # is of the form nx-1.

t By the method given in the American Mathematical Monthly, vol. 43 (1936),
pp. 347-354.

1 Recherches sur la Theorie des Nombres, vol. 2, Paris, 1929, pp. 12-17.

§ This Bulletin, vol. 36 (1930), pp. 847-850.



