
CONCERNING SETS OF POLYNOMIALS ORTHOGONAL 
SIMULTANEOUSLY ON SEVERAL CIRCLES 

G. SZEGÖ 

Introduction. Sets of polynomials {pn(z)} simultaneously orthogo­
nal on several curves have been investigated by J. L. Walsh and 
the author. Recently, the particular case of circles has been treated 
by G. M. Merriman,* and it is the purpose of this note to give a 
shorter derivation of his result. 

For r ̂  0, m ^ 1 the polynomials 

(1) 1, z, z2, • • • , zm~l; zn~m(zm - rm), n = m, m + 1, • • • , 

are orthogonal on the circles \z\ =R>r with the weight function 

(2) w(z) = | zm - rm\~2. 

From the work of Walsh and the authorf we know that if a set of 
polynomials is orthogonal on two distinct circles, these circles must 
be concentric, and a very simple relation holds between the corre­
sponding weight functions. According to the results of the author, the 
case (1), (2) is the only one, save for integral linear transformations, 
in which a set of polynomials is simultaneously orthogonal on all 
circles concentric to a given circle and containing it. Merriman shows 
that this holds true if only the simultaneous orthogonality on two 
(necessarily concentric) circles is assumed. 

Preliminary remarks. In order to prove this pretty result, we shall 
use the following simple identity satisfied by the polynomials 

(3) pn(z) = knz« + • • • , K > 0; n = 0, 1, 2, • • . , 

which constitute an orthonormal set on the unit circle | z\ = 1 with a 
preassigned weight function w(t) =w(eid) =f(6) : 

(4) S JMP&) = knz
nPn{z~l). 

The reader may find this identity in my earlier paper, Beitrdge zur 
Theorie der Toeplitzschen Formen, II (Mathematische Zeitschrift, vol. 
9 (1921), pp. 167-190, in particular, p. 174, (33)). For the sake of 
completeness, however, I include here a very simple direct proof for it. 

* See a note of the same title as the present one in this Bulletin, vol. 44 (1938), 
pp. 57-69. Here also references can be found to the literature on the subject, 

t Cf. loc. cit. 
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We conclude from elementary properties of orthogonal functions 
tha t k^lpn(z) gives the minimum value of the .integral 

(5) i - f+'/(*)|#(*)|W, 
2TT J -X 

considering the set of all polynomials^) (z) = zn+ • • • of degree n with 
the highest term zn. Next, writing 

(6) znp(z~l) = u0po(z) + uipi(z) + • • • + unpn(z), 

we find that this polynomial (6) has the constant term 1 if p(z) has 
the highest term zn, so that 

uopo(0) + uipi(0) + • • • + unpn(0) = 1. 

Now, according to Cauchy's inequality, 

1 = £«^(0)| ^ ZI^|2ZlM0)|2 

= Z l M 0 ) | 2 - f *ƒ(») I «VC*"1) |w 

= Ê I Mo) I V f *ƒ(*) I #(«) N> * = «*. 

with the equality sign being taken if and only if 

^ = M Ö ) | è l M 0 ) | 2 | , » = 0, 1,2, . . . , * * . 

Therefore, save for a constant factor, (4) follows. This factor may be 
determined by comparing the coefficients of zn. 

From (4) we obtain, for » ^ 1 , 

(7) Pn(fypn(z) = Kznpn{z-X) - K^Z^Pn^Z'1) . 

Proof, (i) Assuming that the same system {£w(s)} is orthogonal 
on a circle | s | = 2 ? > 1 , we determine a sequence of positive numbers 
{Xn} such that {Xn-^nCRs)} is an orthonormal set, with a suitable 
weight function, on \z\ = 1 . Then, for n è 1, we may write 

n — 2 n „ , ^ —1. , n—1 —2 n— 1 , 
Xn pn(0)pn(Rz) = knR Xn 2 £» ( !& ) — & n - l ^ K-1% pn-l(Rz ) , 

or 

(8) Xn fn(0)pn(Rz) = knR
n\n Z pn(z ) ~ £ w - l # " \n-iz"~ i>n-l(z ) . 
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Eliminating pn-i(z) from (7) and (8), we obtain 

(9) 

M 0 ) { M * ) - R2~2n
 Y ^ pn(RH)} 

( Xn2-l) 

(ii) Let n^2, and pn(0)^0. If l-R2\*-i/\* = 0, (9) shows that 
£n(s) = R~2npn(R

2z) ; hence ƒ>„(*) = const. sn. 
If 1— i£2Xn

2_i/Xr? T^O, and we set pn(z) =X)r«o^^» w e find from (9), 
for Ï> = 0 , 1, 2, • • • , n, t h a t 

f Xw
2_i) ( XnLi) 

M0)*|i - ««•H-»"—J = *w|i - #2 y r } * " * 
and 

Assuming cs^O, we have £n_„?*0 and 

(10) 

which holds, in particular, for J> = 0 and ? = #. Using this equation, 
we see that the expression Ri-^+^+R}-^ j s independent of v. On the 
other hand, this expression is decreasing if v increases from 0 to n/2. 
Consequently, (10) cannot hold unless v = 0 or v = n. Thus pn(z) = knz

n 

+/ n . This result includes the case previously considered; in that case 
we have /n = 0. 

(iii) In both cases we obtain from (4) for n*z2, 

n n—1 

HTffîp'i*) = HJMp'iz) + Jn(knZ
n + ln) = kn(lnZ

n + kn). 

H e n c e S , - o ^ ( 0 ) ^ W = const.; that is, 

pi(0) = p2(0) = • • • = pn_x(0) = 0 . 

As a consequence of this, it follows that A»(0)=0, {m>n)1 and 

kmzmpm(z-1) = knz
npn{z~l). 
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Therefore, k and we have the relation 

pm(z) = Zm~npn{z) = Z^n(knZ
n + ln). 

We have assumed, until now, that the sequence £2(0), ps(0), • • • 
contained a nonzero term. If this is not the case, the last result still 
holds with n = 1, as may be seen from (4) in the same way as before. 

Now we have, if m^n, m'^n, m^m', 

f(0)eHf*-m')o I knz
n + ln \H6 = 0, z = eid. 

Whence, except on a set of measure zero, we have 

(11) f(6) = const. I knz
n + ln\-\ z = eid. 

We conclude the proof with the obvious remark that the polynomials 
1, js, s2, • • • , zn~l are orthogonal on the unit circle |z | = 1 with the 
weight function (11). 

STANFORD UNIVERSITY 

A FACTORIZATION THEOREM APPLIED TO 
A TEST FOR PRIMALITY* 

D. H. LEHMER 

Certain tests for primality based on the converse of Fermat's 
theorem and its generalizations have been devised and applied by the 
writer during the past ten years, f Perhaps the most useful test for the 
investigation of a large number N of no special form may be given 
as follows :$ 

THEOREM 1. If N divides aN~l — l but is relatively prime to a^N~1)/p 

— 1, where p is a prime, then all the possible factors of N are of the form 
pax + l, if N—l is divisible by pa, ( a ^ l ) . 

Strictly speaking this is not a test for primality since the theorem 
merely gives a restriction on the factors of N. If p<*>N112 then, 
obviously, N is a prime. If pa is only fairly large, the theorem gives 

* Presented to the Society, February 26, 1938. 
t This Bulletin, vol. 33 (1927), pp. 327-340; vol. 34 (1928), pp. 54-56; vol. 35 

(1929), pp. 349-350; vol. 38 (1932), pp. 383-384; vol. 39 (1933), pp. 105-108; Annals 
of Mathematics, (2), vol. 31 (1930), pp. 419-448; Journal of the London Mathe­
matical Society, vol. 10 (1935), pp. 162-165; American Mathematical Monthly, vol. 
43 (1936), pp. 347-354. 

Î This Bulletin, vol. 33 (1927), p. 331. 


