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ON THE APPLICATION OF STRUCTURE 
THEORY TO GROUPS 

OYSTEIN ORE 

The object of the following remarks is to discuss a few of the ideas 
connected with the application of the theory of structures to group 
theory. We shall have to suppose that the principal properties of a 
structure are known. It should only be recalled that a structure is an 
algebraic system with two dual operations, the union A u B and the 
cross-cut A n B. The subgroups of a group G form such a structure, 
and in the following we shall mainly consider structures whose ele­
ments are subgroups. 

It may be said that the main idea in the application of structure 
theory to groups lies in the realization of the fact that important 
parts of the theory of groups are not so much a theory of the proper­
ties of the group elements as a theory of subgroups. Hence one can 
take the point of view that the subgroups rather than the elements 
may be made the building stones for a theory. It is of course quite in­
teresting to examine to what extent this is possible, but the real use­
fulness of the idea appears through the various new results to which 
it leads. 

One observes first that there exists a direct analogy between the 
theory of Dedekind structures and the normal decomposition theory 
for groups. The analysis of the axiomatic basis for the theorem of 
Jordan-Holder was the object of Dedekind's original investigations 
on "Dualgruppen" or structures. A Dedekind structure is character­
ized by the relation 

(1) i n ( 5 u C ) = 5 u ( i n C ) , ADB, 

which holds for any three elements. For such structures the ordinary 
decomposition theorems like the refinement theorem of Schreier-
Zassenhaus (including the theorem of Jordan-Holder), the theorem 
of Schmidt-Remak on direct decompositions, the theorem on irreduc­
ible decompositions, and so on, can be derived, and since the Dede­
kind relation (1) is satisfied for any three normal subgroups, the de­
composition theorems for groups must follow. 

One of the most interesting points in this theory is the extent to 
which concepts defined by element properties may be replaced by 
structural properties. For instance, in all decomposition theorems 
there occurs isomorphism between components in the various decom-
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positions. Now isomorphism is obviously an element property, but 
one finds that those isomorphisms which actually occur can be ob­
tained by successive applications of the second law of isomorphism. 

(2) A/AaB^AuB/B. 

This means that these isomorphisms can be replaced by the concept 
of similarity of quotient structures, since two quotient structures are 
defined to be similar when one can pass from one to the other through 
repeated transitions of the form (2). 

The theorem of Schmidt-Remak contains the further concept of 
centrally isomorphic subgroups: Two subgroups are centrally iso­
morphic when the quotient between corresponding elements lies in 
the center. This can be replaced again by the structural concept of 
direct similarity : Two normal subgroups A and B are directly similar 
when there exists a third C such that 

(3) AuC = BuC, 

where A and C and also B and C are relatively prime and hence 

(4) AnC = B(\C = E, 

where E is the unit group. Conversely the relations (3) and (4) imply 
that C belongs to the center of A u B and A and B are centrally iso­
morphic. 

The Schmidt-Remak theorem has been discussed frequently in the 
literature, but there are still several questions connected with it which 
have not yet been solved in a satisfactory manner. The theorem is 
usually proved in algebra under the assumption of the so-called finite 
chain condition, that is, the condition that both ascending and de­
scending chains of structure elements should be finite. One knows 
also, according to an example given by Krull concerning moduli in 
algebraic rings, that the theorem cannot be true in general when only 
one chain condition is imposed. For the special case of groups there 
exist however interesting investigations by Kurosch, Fitting, and 
Korinek in which the theorem is deduced under very weak conditions. 
Also for Dedekind structures the theorem can be obtained when only 
one chain condition holds, but then certain further limitations must 
be made; for instance it is sufficient to make the rather natural as­
sumption that certain component structures should not be structure-
isomorphic to proper substructures. These are extensions of the theo­
rem in a different direction from those mentioned for groups, but a 
common general form is not known. 
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Let us return for a moment to the relations (3) and (4). We have 
already mentioned that they imply that C belongs to the center of 
A u B\ hence it is an abelian group. Consequently the symmetric rela­
tions 

A u B = BuC = CuA = M9 

A nB = BnC = CnA = E 

imply that A, B, C, and also M are abelian groups, When this is ap­
plied to the three groups TA, TB, Tc obtained from 

TA = (A n (B u O ) u (B n C) 

by permutations, it yields the rather interesting fact that for any 
three normal subgroups A, B, C the quotient group 

(5) (A u B) n (B u C) n (C u A)/{A n B) u (B n C) u (C n A) 

is abelian. It is not an arbitrary abelian group since its invariants 
must occur in pairs, but any abelian group with this property is so 
representable. 

Up to the present we have discussed the decomposition theorems 
for normal subgroups. Now one can also examine the possibility of 
extending some of these results to certain non-normal subgroups. The 
first difficulty one encounters in such an investigation is the fact that 
the quotient groups are only defined for normal subgroups. In a struc­
ture one has the simpler situation that there is a quotient structure 
A/B associated with every pair of elements A D B. This suggests the 
introduction also in groups of an algebraic system A/B defined for 
all subgroups ADB. The system A/B consists of the cosets a-B 
(or B-a) as in the normal case. The difference lies in the fact that 
when the elements of two cosets are multiplied, they will usually not 
belong to a single third coset but will distribute themselves over a 
number of cosets 

a\B • a%B = { • • • , &iB , • • • } . 

This leads us to define the algebraic system A/B as a tnultigroup, 
that is, an algebraic system with a many-valued product operation. 
In general a multigroup satisfies the two axioms: 

(i) The associative law holds. 

(ii) The linear relations 

(6) axDb, yaDb 

shall always be solvable, that is, there shall exist an x such that b occurs 
among the various values of the product ax. 
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The theory of such multigroups or hypergroups has first been stud­
ied by Marty and Wall. In a recent paper by Dresher and Ore the 
decomposition theory has been investigated on the basis of the theory 
of Dedekind structures. 

The theory presents considerable complications in comparison with 
ordinary group theory. Unit elements such that 

aeDa, eaDa 

for all a may or may not exist. If they exist, right or left inverses can 
be defined but are not uniquely determined. Most investigations in­
volve closed sub-multigroups, where we define a sub-multigroup A to 
be closed when it has the property that if a and b belong to A then 
all x and y satisfying (6) also belong to A. Normality may be defined 
in two ways : The condition 

gA = Ag 

for all g is sufficient to derive the Dedekind relation and a theorem of 
Jordan-Holder for closed normal sub-multigroups. The stronger con­
dition 

gAg~lcA 

for some inverse g~l implies that the quotient multigroup defined by 
A is an ordinary group. There exists also an interesting type of multi-
groups with composition chains in which every quotient multigroup 
is a group. 

Let us now return to the extension of the decomposition theorems 
in ordinary groups. One finds easily that the Dedekind relation (1) 
also holds for all A if B and C are permutable groups, that is, there 
exist relations 

b\' C\ = C2 '02 

for their elements. From this fact follows the weak form for the theo­
rem of Jordan-Holder that two chains of subgroups which satisfy cer­
tain permutability conditions must always have the same length and 
their indices must be the same in some order. A similar result holds 
for irreducible decompositions. The closest analogy to the normal 
case is obtained for the so-called quasi-normal subgroups. Normality 
of a subgroup A is defined by the relation 

g-a = a'-g 

for all g. In this permutability relation one may replace the absolute 
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invariance of g by structural invariance; that is, g shall remain in the 
same cyclic subgroup, hence we shall have the relation 

g-a = a'-gn, 

where the exponent n may depend upon g and a. Subgroups A satisfy­
ing this condition shall be called quasi-normal. For quasi-normal sub­
groups the analog to the theorem of Jordan-Holder holds with the 
only difference that isomorphism of the quotient groups is replaced 
by structure isomorphism of the quotient multigroups. Also for the 
decompositions into irreducible quasi-normal components the results 
are analogous to the normal case. 

One of the interesting applications of the ideas of structure theory 
to groups is to be found in the principle of duality. The formulation 
of the structure axioms shows that they are dual in character in the 
sense that they remain the same when union and cross-cut are inter­
changed. This implies that every structure theorem has a dual coun­
terpart which one obtains by such an interchange, and consequently 
those group theorems which are purely structural in nature can be 
dualized. But obviously in most cases the group theorems depend on 
the special character of the group as an algebraic system. On the other 
hand to each theorem containing only subgroups and their cross-cut 
and union a dual theorem can be formulated. The fundamental ques­
tion is then when this dual theorem is a true theorem or under what 
conditions it is valid. We shall not discuss this any further, but it 
should be noted that various important problems in group theory 
may be considered to be of this nature. 

The Dedekind relation is self-dual, and the ordinary normal de­
composition theorems are structural in nature and hence may be 
dualized directly. The self-dual theorems are usually of particular 
interest. Both the refinement theorem of Schreier-Zassenhaus for 
principal series, including the Jordan-Holder case, as well as the theo­
rem of Schmidt-Remak on direct decompositions, have this property. 
Another pretty self-dual theorem is the one we have already men­
tioned stating that the quotient group (5) is abelian. 

To illustrate the process of dualization let us consider only one ex­
ample. A group G may be generated in various ways by means of ele­
ments 

G = {gi,g2, • • • } . 

All those elements / i , ƒ2, • • • which are superfluous in any such repre­
sentation form a group, the </>-group of G. To dualize this concept we 
shall have to define it in a slightly different, but purely structural 
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form. We consider all representations of G as the union of subgroups 

G = ^4iu^42u • • • . 

All the subgroups F\, i^, • • • which are superfluous in any such 
representation form a structure, and their union is the 0-group of G. 
One also derives the theorem that the 0-group is the cross-cut of all 
the maximal subgroups of G. The dual of the representation of G as 
the union of subgroups is the representation of the unit element as 
the cross-cut of subgroups 

E = Ai nA2 n • • • . 

Those subgroups which can be omitted in any such representation 
again form a structure, their union 0* is a characteristic subgroup and 
the quotient group G/0* is the dual of the <£-group. One sees that <£* 
is the union of all minimal subgroups of G; hence it is the subgroup 
generated by all elements of prime order when we suppose that all 
elements have finite orders. This dualization process also raises an 
interesting problem. The structure of the 0-group is particularly sim­
ple since it is known to be the direct product of its Sylow groups. The 
dual problem is to determine whether one can in general say anything 
about the structure of the group G/<£*, namely the quotient group of 
a group with respect to the subgroup generated by the elements of 
prime order. 

Finally one might mention the problem of the structural relations. 
In the theory of structures certain relations like the Dedekind rela­
tion or the distributive relation 

At\(BvC) = (Ac\B)v(A(\C) 

are of fundamental importance. Also for groups it is of interest to 
know when such relations hold for the subgroups, and it is of particu­
lar interest to know which groups are characterized by the fact that 
a certain structural relation holds for all subgroups. A few results 
in this direction have been obtained, but they will not be discussed 
here. 

REFERENCES 

Oystein Ore, On the foundation of abstract algebra. I, Annals of Mathematics, voU 
36 (1935), pp. 406-437; II, ibid., vol. 37 (1936), pp. 265-292. 

, Structures and group theory. I, Duke Mathematical Journal, vol. 3 (1937), 
pp. 149-174; II , ibid., vol. 4 (1938), pp. 247-269. 

Dresher and Ore, Theory of multigroups, American Journal of Mathematics, vol. 
60 (1938), pp. 705-733. 

Y A L E UNIVERSITY 


