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A SUFFICIENCY PROOF FOR ISOPERIMETRIC PROBLEMS 
IN THE CALCULUS OF VARIATIONS 

M. R. HESTENES 

The purpose of the present paper is to show that the sufficiency 
theorems for a strong relative minimum for isoperimetric problems 
can be obtained from those for simple integral problems with only a 
little additional argument. The method here used is a simple exten­
sion of one used by Birkhoff and Hestenes* for a special isoperimetric 
problem. Heretofore sufficiency theorems of this type have been ob­
tained from those for a restricted relative minimum by the applica­
tion of the theorem of Lindeberg. Sufficiency theorems for a restricted 
relative minimum can be obtained either from the theories of the 
problems of Lagrange and Bolza or by an argument analogous to that 
used for simple integrals. 

The problem to be considered is that of minimizing an integral 

f(x, y, y')dx = I f(x, yh • • • , yn, ? / , • • • , yt)dx 
Xl J XX 

in a class of admissible arcs 

(1) yi(%), %i = x = #2; i = 1, * * • , w, 

joining two fixed points 1 and 2 and satisfying a set of isoperimetric 
conditions 

ƒ1 X2 

fa(%, y, y')dx = la, a = 1, • • • , m, 
xi 

where the Z's are constants. I t will be assumed that the f unctions ƒ, ƒ« 
are defined and have continuous derivatives of the first three orders 
in a region ^ of points (x, y, y'). The points of ^ will be called ad­
missible. A continuous arc (1) that can be divided into a finite number 
of subarcs on each of which it has continuous derivatives will be called 
admissible if its elements (x, y, y') are all admissible. 

Associated with the problem is an integral of the form 
» XI 

F(x, y, y',\)dx, ƒ» X2 

Xl 

* Natural isoperimetric conditions in the calculus of variations•, Duke Mathematical 
Journal, vol. 1 (1935), pp. 251-258. The method used in this paper was suggested by 
Professor Birkhoff. 
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where F=f+\afa* and theX's are constant multipliers. I t is in terms 
of this integral that the sufficiency conditions stated below are given. 
An admissible arc (1) and a set of constants Xa having continuous 
second derivatives will be said to form an isoperimetric extremal if 
they satisfy the Euler-Lagrange equations 

(3) Fyt - - i = 0. 
ax 

Let Eo be an isoperimetric extremal joining the points 1 and 2 and 
satisfying the conditions (2). It will be assumed that E0 is normal, 
that is, tha t the equations Piaaa = 01 where 

(4) p. = f - -Uüi' 
ax 

hold along EQ only in case the constants aa are all zero. Subarcs of E0 

need not be normal. We shall suppose that the extremal Eo has the 
following further properties. At each element (x> y, y', X) in a neigh­
borhood of those belonging to Eo the inequality 

F(x, y, Y', X) - F(x, y, y', X) - (F/ - y!)FvA*, y, y', X) > 0 

holds for every admissible set (x, y, Yf) 9^ (x, y, yf). Moreover along E0 

the inequality Fyi'y^7TiTk>0 holds for every set (7r)?*(0). Finally 

2o)(x,r}, rj')dx, 
Xl 

the second variation of I\ along E0, is positive for every non-null set 
of admissible variations y)i{x), (^1^x^X2), vanishing at x = x\ and 
X — X2 and satisfying with E0 the equations 

ƒ> X2 

{faViVi + faVi'Vi }dX = 0 . 
xi 

An admissible variation rji(x), (^1^x^X2), is an arc having continuity 
properties like those of admissible arcs. The integrand 2co appearing 
in CO?) is of the form 2co= FyiykT]i7)k + 2Fyiyk>'qi7)1!; +FVi'Vh>'qlri£. 

The theorem to be proved is the following: 

THEOREM. If E0 has the properties described above, there is a neigh­
borhood J of Eo in xy-space such that the inequality J(C) >J(Eo) holds 
for every admissible arc C in J joining 1 and 2, satisfying conditions (2), 
and not identical with E0. 

* Repeated indices denote summation. 
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The proof of this result is based on two lemmas to be given below. 
In these lemmas we use the following definition of conjugate points. 
A value x^Xx is said to define a point 3 conjugate to 1 on EQ relative 
to I\ if there is a solution rji(x) of the equations 

(6) Ktin) = «„ - - ^ - = ° 
ax 

having continuous second derivatives and vanishing at X\ and x$ but 
not identically zero on X1X2. 

LEMMA 1. If E0 has on it no point 3 conjugate to 1 relative to I\, there 
exist neighborhoods J of Eo in xy-space, N of the end values of EQ in 
{x\y1X^2)-space, and A of the multipliers \a belonging to E0 such that 

for every set (xiyix2y2) in N and Xa in A there is an isoperimetric extremal 
E\ in J having (xiyix^y^) as its end values and X« as its multipliers. 
Moreover for these values of \a the inequality I\(C)>I\(E\) holds for 
every admissible arc C in J joining the ends of E\ and not identical 
with E\. 

This lemma is analogous to one given by Hahn and has been estab­
lished by Birkhoff and Hestenes* following a method given by Bliss f 
in the proof of a similar theorem for the problem of Bolza. It should 
be noted that this lemma does not depend on the normality of E0. 

LEMMA 2. Let to = xi<h< • • • <tq+i — X2 be a set of values such that 
there are no pairs of conjugate points on E0 relative to I\ on any of the 
intervals tr-i^xStr, (r = l, • • • , q + 1). There exists a qn parameter 
family of broken isoperimetric extremals 

(7) yi(x, bn, • • • , bnq), X«(ftii, • • • , bnq), xx S oc S x2, 

containing E0for bis = bis0, satisfying the conditions (2), passing through 
the points 1, 2, and (x, 3 )̂ = (ts, bu), (s = l, • • • , q), and having no 
corners on the intervals tr-i<x<tr. The functions yi(xy &), yiX(x, b), 
\a(b) have continuous first and second derivatives for values (x, b) near 
those belonging to E0 except possibly at the corner points. For the arc Eb 

of the family (7) determined by values (b) 9^ (bo) in a sufficiently small 
neighborhood of (b) = (bo) one has J(Eb) >J(E0). 

In order to establish this result let 

(8) Yi(x, hi, • • • , bn(n Xi, • • • , Xm), X«, xi ^ x ^ %2, 

* Loc. cit., pp . 253-254. 
f The problem of Bolza in the calculus of variations, Annals of Mathematics, (2), 

vol. 33 (1932), pp. 267-270. 
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be a (qn+tn) parameter family of broken extremals containing E0 

for values biS = biSo1 Xa=Xao, passing through the points 1, 2, and 
(#, yi) = (ts, bis) and having no corners on the intervals / r _ i<x< / r . 
Except at the corner points the functions Yi(x, b, X), YiX(x, b> X) have 
continuous first and second derivatives for values (x, b> X) near those 
belonging to E0. The existence of a family of this type follows readily 
from the first part of Lemma 1 and existence theorems for differential 
equations of the form (3). When the functions Yi(x, b, X) are substi­
tuted in the integrals (2) a set of functions Ja(b, X) is obtained having 
continuous first and second derivatives for values (ô, X) near those 
on Eo. The functional determinant |3/«/^X^|, (a, j3 = l, • • • , m), is 
different from zero when (b, X) = (bo, X0), as will be seen in the next 
paragraph. The equations Ja(b, \)=la are satisfied by the values 
(b, X) = (b0, X0) and hence have unique solutions Xa(&), with \a(bo) 
=Xa0, having continuous second derivatives near (b) = (b0). When the 
functions \a(b) are substituted for Xa in the functions (8), a family 
(7) is obtained having the properties described in the lemma. The 
first part of the lemma is immediate. In order to prove the last part 
we note that by virtue of the identities 

yi(xh b) = y a, yi(t3, b) = bis, y%(%2, b) = yi2, 

where (xiy yi), (#2, V2) are the points 1 and 2, respectively, the varia­
tions 

byi(x) = yibj8(
x> bo)dbjSj j = 1, • • • , n; s = 1, • • • , q, 

satisfy the relations 

Syi(xi) = 0, èyi(ts) = dbi89 àyi(x2) = 0, 

so that 5yi(x) ^ 0 on X1X2 if (db) y£ (0). Moreover the variations rji = dyi 
satisfy equations (5). For by construction the value Ja(b) of the in­
tegral Ja along the family (7) is a constant. It follows that dJa 

= La(by) = 0 along Eo. From the assumptions on E0 we have ac­
cordingly Q(8y)>Q whenever (db)^(O). Consider now the func­
tion 

Jo(b) = J(b) + X«o/«(6) 

obtained by evaluating the integral Jo = J+^kaoJa along the arc yi(x, b) 
of the family (7). By the use of the Euler-Lagrange equations (3) and 
the properties of 8yi just established, it is found that along E0 one has 

{FVi&yi + Fvt.byl }dx = FyiSyi = 0, d2J0 = Q(Ôy) > 0 
xi \xi 
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for ail values (db) 9^(0). In view of these relations and the equations 
Ja(b)=la it follows that for values (b)^(bo) near (b) = (bo) the in­
equality 

0 < Jo(b) - Jo(h) = J(b) - J(bo) 

holds, as was to be proved. 
The proof of Lemma 2 will be complete if we show that the de­

terminant \dJa/d\p\ is different from zero at (b, X) = (fr0, Xo). To 
prove this let d'Yi(x) = Yi\^(x, b0, \o)dkp. For the function Ja(b, X) one 
then has along EQ 

dJa 

(9) b'Ja = — dkp = La(b'Y), 
d\p 

where the functions La are given by equations (5). From the relations 

Yi(xi, b, X) = y a, F<(/„ b, X) = bia, Yi(x2, b, X) = yi2 

it follows by differentiation that 

(10) &'Yi(x!) = 0, ô'Yi(ta) = 0, B'Yi(xa) = 0. 

Moreover along E0 we have 

(11) Ki(b'Y) + Pipdkfi = 0, 

where P»-p, Ki are given by equations (4) and (6). This can be seen by 
substituting the functions (8) in the Euler-Lagrange equations (3), 
differentiating for Xp, multiplying by dKp, and summing. Suppose now 
that the determinant in question were zero. Then there would exist 
constants d\p not all zero such that ô'/« = 0 along E0. If o 'F t = 0 on 
x±x2, one would have Pipd\p = 0 on X\X2 by equations (11), and E0 could 
not be normal. Hence ô ' F ^ O on x±x2. By the use of equations (9), 
(10), (11), and o'Ja = 0 and integration by parts it would be found 
that along E0 we would have La(b

fY) = 0 and 

b'YilKiib'Y) + Pipd\p]dx = Q(b'Y) + ô'Jpdkp = Q(b'Y), 

contrary to our assumption concerning the value of the second varia­
tion Q(rj) along E0. Hence | d / a /dX a | ^ O o n E o and Lemma 2 is estab­
lished. 

We are now in position to prove Theorem 1. To do so we let J' be a 
neighborhood of E0 in x^-space so small that each subarc of the family 
(7) in J' with end points on successive hyperplanes x = tr-.it x = tr af­
fords a minimum to the integral I\ relative to admissible arcs in J' 
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joining its end points. This is possible by virtue of Lemma 1. Let J 
be a second neighborhood of E0 interior to Jf such that every admissi­
ble arc C in J joining the points 1 and 2 and satisfying equations (2) 
cuts the hyperplanes x = ts in points (ts, b{S) whose ^-coordinates bi8 

determine an extremal Eb of the family (7) lying in J'. By Lemma 1 
we have I\(C) ^ h(Eb), the multipliers Xa being those belonging to Eb. 
But since the arcs C and Eb satisfy equations (2), this implies that 

h(C) - h(E) = J(C) - J(Eh) ^ 0, 

the equality holding only in case C=£&. Diminish J if necessary so 
that J(Eb)^J(Eo), as described in Lemma 2. We then have J(C) 
^J(Eb)*tJ(Eo), the equality holding in both cases only in case 
C = E0. This proves the theorem. 

T H E UNIVERSITY OF CHICAGO 

A NEW SUMMATION METHOD FOR 
DIVERGENT SERIES* 

W. A. MERSMAN 

1. Introduction. The method to be given here is a modification of 
tha t due to Euler-Knopp.f For the weighted means of the partial 
sums we use the binomial coefficients, but instead of beginning with 
the first we begin with the "central" one, that is with the greatest. 
Thus the initial terms always receive the greatest weight, as in the 
Cesaro-Hölder method. 

In this paper it is shown (1) that this new method includes the 
first two Cesàro methods, and (2) that it also includes the first Euler-
Knopp method; further, (3) the exact range of summability of the 
geometric series is determined. Finally, an example is given which in­
dicates that this method may be more powerful than all those of 
Cesaro-Hölder, although this statement has not yet been proved. 

2. Definitions and notation. Throughout we consider a series 
^2l^oak and denote by Sn the sum of its first n + 1 terms. We define 
an as follows: 

1 n 

( 1 ) 0"n = / > Cïn+l.n—kSki 

where Cn,k denotes the ordinary binomial coefficient. If an approaches 

* Presented to the Society, April 11, 1936. See abstract 42-5-139. 
t K. Knopp, Mathematische Zeitschrift, vol. 15 (1922), pp. 226-253. 


