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DIVISIBILITY OF GENERALIZED FACTORIALS*
BENJAMIN ROSENBAUM

1. Introduction. Two different types of expression were obtained
by A. M. Legendret for H, the index of the highest power of the
prime p dividing #!:
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where [a/b] denotes the largest integer less than or equal to a/b,and s
is the sum of the digits of # to the base p. R. D. CarmlchaeII consid-
ered the more general problem of determining H for H,Ho (xa+c),
where @ and ¢ are relatively prime positive integers and ¢ #0 (mod p).
He obtained expressions of type (1) and upper and lower bounds for
H. In the present paper a correction is made in the upper bound, new
expressions for H of types (1) and (2) are derived, and the results
are extended to products where a¢ and ¢ are any positive integers.

(2 H=

2. Discussion of previous results. Carmichael used the following
method: Set ¢y =c, and let 7, be the smallest value of x =0 such that
xa~+c,_1=0 (mod p), the quotient bemg ¢. Then ¢.=p—1. Let
eo=n—1, e,=[(e,1—1,)/p], (r>0). 1f [];_, o(xa—l-co) is divisible by p,
it has e;+1 factors of the form (mp-+i)a-+co, (0Sm=[(eo—11)/p)),
each divisible by p. The product of the quotients is | [;L(xa+cy).
If this product is divisible by p, it has e;+1 factors of the form
(mp+is)a+tci, (0=m=[(es—1z)/p]), each divisible by p. Hence e;+1
factors of H,=;(xa+co) are divisible by 2 If the product of the quo-
tients [ [ 2o (xa +c,) is divisible by p, es+1 factors of [ ;- O(xa +co) are
divisible by 3. Continue in this manner until a product [ [;%,(xa+c.)
is obtained which is not divisible by p. Then e; 41 factors of the origi-
nal product are divisible by $* and no factors by p*+1. Hence

(3) H=i(er+1).

* Presented to the Society, April 10, 1936. By a generalized factorial we mean a
product of integers forming an arithmetic progression.

t Théorie des Nombres, 2d edition, 1808, p. 8.

1 This Bulletin, vol. 15 (1908-1909), pp. 217-221.
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For certain values of a, ¢, and p, one has ¢co=c¢;= - - - =¢ and
f1=1s=- ... - =1, In that case

H=[n—1—i+p:|+|:n—1—i—ip+p2:|

b4 p?
+[n—1—i—;p—ip2+p3]+...

In the case of 1-3-5- - - -+ 2n—1),1=(p—1)/2 for p5%2 and

H=[M—1+p]+vn—1+ﬁ]
2p 2p?

2n — 1 8
+[_”___1L_1’_]+...
2%

Carmichael also obtained the expression

4)

n—3S n—3
SH=Wh+
p—1 p—1

when # is not a power of p, and H=(n—1)/(p—1) when = is a power
of p, where s is the sum of the digits of # to the base p and % is the in-
dex of the highest power of p <#%. The following examples show that
these expressions are incorrect: When a=3, ¢4=6, =3, and p=2,
one has =35 while h+(n—s)/(p—1)=2. When ¢ =2, ¢o=21, n=4,
and p=3, one has H=4 while 2+ (n—s)/(p—1)=2. When a¢=35,
co=1,n=4, and p=2, one has H=5 while (r—1)/(p—1)=3. It will
be shown in §8 that the error in the first expression lies in the term 5.
The second expression was derived from a source containing a similar
error. The use of (12) in the above examples gives upper bounds for
Hof 5,4, and 5, respectively.

I. Schur* obtained a result equivalent to (4) by the use of a differ-
ent method. He found H=Y_,_,[n/p"+1/2].

E. Stridsberg,t considering the same problem as Carmichael, ob-
tained very complicated expressions for H.

3. Some relations between the letters c. We shall make use of the
following theorem and corollaries:

* Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-
Mathematische Klasse, 1929, p. 372.

t Arkiv for Matematik, Astronomi och Fysik, vol. 6 (1911), no. 34; summary in
Dickson, History of the Theory of Numbers, vol. 1, p. 264.
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THEOREM. If ¢, and ¢ are any two of the letters ¢, with s>r, then c,
is the least integer satisfying the conditions: (1) cp*"=c, (mod a),
(2) csp*r =,

Proor. The theorem is true for ¢,y1, since 4,41 is the least non-nega-
tive integer such that 4,.1¢+¢, =0 (mod p), the quotient being ¢,1.
Proceed by induction, assuming that ¢, is the least integer such that
cop? "2 ¢, and ¢, p* " =¢, (mod a). Now 2,116+ c, =cop1p. Hence cpq1
is the least integer such that c,41p* " Z ¢, p? " and cop1p? T =c,p*"
(mod @). It follows from the properties of ¢, that ¢, is the least in-
teger such that c,11p** " 2¢, and cppap? ' "=¢, (mod a). The theo-
rem is therefore true for ¢,41 and consequently for ¢;.

COROLLARY 1. If € is the least positive integer such that p¢=1 (mod a)
and s>r, then c,=ma-+residue of c.pF<t'— (mod a), where k is any
integer such that ke+r—s =0 and m is the least non-negative integer such
that ma+residue ¢, p*<t == ¢,p"=°. When ¢, <a, m=0.

Proor. The first part of the corollary follows from the theorem,
which may be restated in the form: ¢, is the least integer greater than
or equal to ¢,p™* and congruent to ¢,p*<*~* modulo a.

To prove the second part of the corollary we make use of the con-
gruence xp*"=¢, (mod @), which has a unique solution 0=x;<a.
When ¢, <a, x1p*" = ¢,, otherwise the positive integer ¢,—x;p*" is less
than ¢ and is congruent to zero modulo a. By the theorem, x;=c,.
Therefore ¢; <a and m =0.

When p is large, the above corollary gives a method for calculating
the letters ¢ which is more rapid than that based on the initial deter-
mination of 7, as the least non-negative integer such that 7,6 +c¢,_1=0
(mod p). This is especially true when ¢, <a.

ExaMPLE. When ¢,=29, a=7, and p=11, ¢e=3. Then c;=7m
+ residue (29)(11)3*+-'(mod 7)=7m+ residue (1)(4)2="Tm+2=9,
(2<copt=29/11<9), and co="Tm+residue (9)(11)2=Tm+4=4.

COROLLARY 2. Necessary and sufficient conditions that ¢, =c, are
(1) er=a, (2) pr7=1 (mod a).

PROOF. Since ¢, is the least integer satisfying the conditions of the
theorem, c¢p*"=c,~+ja, where j<p—"—1. If ¢.,>a, then cp*"
<¢+e(pr—1)=cp*", and ¢, <c,. Since ¢;p*"=¢, (mod a) and ¢,
is relatively prime to a, so are all the letters c. Therefore when ¢, =c,,
we have p*~"=1 (mod @), and the conditions are necessary.

By Corollary 1, when ¢, <a, ¢, =residue ¢,p*<"—* (mod a). If, in addi-
tion, p*7"=1 (mod a), then ¢,=residue ¢, (mod a) =c¢,. When ¢,=a,
we have ¢ =1 and ¢;=ma=1. Hence the conditions are sufficient.
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4. Expression for H involving the letters 7. Since [ [;%o(xa+¢;) #0
(mOd P), and ’it+1a+Ct = CH.]P, it fOHOWS that iH-l >e;. Also it+1 ép— 1.
Hence —1<(e;—1%:41)/p <0 and

e — 1
em:[;_“r_l}:_l,
)

By induction, when »>¢,

Thus (3) is equivalent to

(5) H=§_‘,(e,+1).

r=1

Using the values of e, in §2, substituting that of ¢, in e;, the result-

ing value of e;in e,, - - - , we obtain from (5)
(6) ﬂ—lp—il—'igﬁ—i;;pz—l"ﬂs
o : ]+

5. Expression for H involving the letters ¢. Consider ¢.a+c¢,_; = ¢, p.
Solving for 7, and substituting in (6) we obtain

l a— ¢ l a— ¢
H = [— + ] + [——— + ]
ap a ap? a
l a — ¢
ap? a
where /=a(n—1)+c¢o is the last factor of the product H::;(xa—l-co).
Since e,+12=1 for r<¢ and e,+1=0 for >, all terms of (5), (6),
and (7) are zero after the first zero term.
Whena =1 or 2 and ¢#0 (mod #), we have p=1 (mod a). By Corol-
lary 2, when ¢o<a, co=c1= - - - =cand (7) give (1) or (4).
When a=3, 4, or 6 and ¢#0 (mod p), we have p=1 or p=—1
(mod a). When ¢y<a and p=1, co=c1= - - - =¢c. When ¢;<a and
=—1, since p?*=1 (mod @), co=cc=c¢c4= - - -. By Corollary 1,

ci=residue of c¢op (mod a). Hence ci=—co=a—¢, (mod a), and
CL=Q—Co=C3=C~ * *

™
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6. Expression for H involving digits of » to base p. Let n=d,p?*
+drapt 14+ - - - Fdip+do, and let s=do+di+ - - - +di, with 0=4d,
=p—1. On substituting the above value of % in (6) we obtain

- i [dhi’h + dh—lph_;r+ st dipt
r=1

prtdeap™ - Fdiptdo— dpt— - — dgp — i1 — 1]
P '
We shall designate the second term in the brackets by F,. When
drap Hdeop i+ - - - FdoZdp 4 ap 2+ - - - +i+1, we ob-

tain 1 £ F, <2. Since each d and each 7 is less than or equal to p—1,
this will occur when and only when d,_;>14,, or

+

(8) dr—l = ir and dr—l—-b > ir—b,

where r—1—562=0 and d,_; is the first d of lower subscript than d,_;
which is not equal to the corresponding ¢. (The letter ¢, corre-
sponds to d,_;. Though dxy, =0 when u =1, it is possible to have the
corresponding letter =0 and Fry,=1,v=1.) When d,_1p"14d,_op"?
+ - Fdo<tpiH4ap 24 - - - +4+1, we have 0= F,.<1.
From the above it follows that H=Y ,_,[n/p"]+2_r-1[F,] and finally
that

where g is the number of values of =21 for which d,_; 21,, the equality
sign being used only when the conditions of (8) are fulfilled.

In the case of n!, t=p—1. Hence g=0and H=(n—s)/(p—1).

In the case of 1:3-5- --. - (2n—1),2=(p—1)/2 and g is the num-
ber of values of =0 for which d,=(p—1)/2, with the restriction on
the equality sign.

ExampPLE. This example illustrates the use of (9). Consider the
product (22)(27)(32)(37)(42) with p=3. From 4,a+c¢,_1=c,p we ob-
tain 4;,=1, 4,=0, 3=0, 94=1; and z=5=(1)(3)4(2). Hence do=2,
d1=1;d,.=0,r>1. Since dy> 11, d; > 12, ds =13, and d; <14, we have g=3.
H=(5-3)/2+3=4.

7. Expression for H involving digits of /=a(z—1)4c¢, to base p.
Let I=p +0ap '+ - - - +08p and o=08+86+ - - - +086, with
0=<6,=<p—1. Since I=pM1—1 and ¢, =1, all terms of (7) beyond
[2/ap*+(a—cn)/a] are zero. Hence
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r=1

"= 2*: [a(n — 1)+ co+ p7(a — c,)]

= ap”

i [Nr n D,y + ap — Rr-lP’jI’

ap” ap”
where D,_1=0,_1p" 14+ 06,_9p" 2+ - - - +8,. Here R,_; is the residue
(21 and =a) of p*<D,_; (mod a), € is the least positive exponent
such that p¢=1 (mod @), k is an integer such that ke—7=0, and
N,=a(n—1)+co—c¢,p"—D,_1+R._1p". By observing that a(n—1)4co
—D,_1=6p + - - - +6.p", ¢;p"—¢co=0 (mod a) (see the theorem of
§3), and R,_1p"—D, 1=p*< "D, 1p"—D,_1=0 (mod a), we see that
N,=0 (mod ap).
Also because D,_1=p"—1 and 1 = R,_;=<a, we see that

r=1

D._; + ap™ — R,_1p"
1 ¥4 1P<

0= 1.
ap”
Therefore
NN,
H =
Z o
- i(a)\P)\_r + 6)\-—1P)\_1_r + vt + 57+1P + Br + Rr—l - cr)
r=1 a a
A Br T_1+ r—2+,,,+1 Rr— — O
r=1 a a
5,«(?’ - 1) Rr._l - CT>
= + ,
)
and finally
I — A Ro_1— ¢
(10) i + Z Hr1 7 O .

B G(P - _ﬁ r=1 a

In the case of %!, we have a=1, ¢=1, e=1, R,_;=1, and
ZLI(RT_l —¢,)/a=0. Therefore H=(n—s)/(p—1).

In thecaseof 1-3-5- - - - - (2n—1),wehavea=2,c=1,and e=1.
Then R,_;=1 when D,_; is odd; R,_;=2 when D,_; is even. Hence
H=02n—o—1)/2(p—1)+e¢/2, where e is the number of values of 7,
(1 =7=N\), for which D,_; is even. When I=p* 6 =1 and e=N\. There-
fore H=(n—1)/(p—1)+N/2.

ExaMpLE. This example illustrates the use of (10). Determine H
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for (22)(27)(32)(37)(42) with p=3. We obtain e=4, [=42=(1)(3)3
+(1)(3)2+(2)(3)+0; Dy=0, D;=6, Dy=15; Ro=5, Ri=residue
(3)42(6) (mod 5)=4, R,=5. From ,a-+c,_1=c,p, we obtain ¢; =9,
c2=3, and ¢;=1. Then H=(42—4)/(5)(2)+(14—13)/5=4.

8. Upper and lower bounds of H. The terms of (5) and (6) vanish
after the ¢th term, where ¢ has the same meaning as in (3). We have
0=1,<p—1. Substituting the limiting values of 7, in (6) we obtain

GG

(11)

IIA

n—1 n—1
e K
b4 P’

It is evident from §2 that ¢ is the index of the highest power of p
dividing any one factor of H::;(xa—l—co). Hence ¢<)\, the index of
the highest power of p=l=a(n—1)+4co. However ¢t may exceed #,
the index of the highest power of p=<#. If a is the index of the
highest power of p exactly dividing #, and 8 is any integer =0, then
[n/p#]=[(n—1)/p?]+1 for B=a, and [n/pf]=[(n—1)/p?] for
B>a. Substituting these results in (11), we have

[%]+[%:|+--'éﬂé[%:l—l—[%]—l-----l-)\—a,

n—s n—-s
SH=E——+\N—c.
p—1 p—1

9. Values of H when ¢ and ¢, are any positive integers. If ¢ and ¢
are not relatively prime let d be their greatest common divisor,
with a=a'd and co=c'd. Then [[i_o(xa+co)=d"[[ooo(xa’+c).
If H, ', and hq are the indices of the highest powers of p dividing
H:,:;(xa—l—co), H::é(xa’—l—c’), and d, respectively, then 1 =H'+nhq.

When ¢ and ¢, are relatively prime and ¢ =0 (mod p), xa+¢, is not
divisible by p and H=0.

or

(12)
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