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ON CERTAIN GROUPS OF BIRATIONAL 
CONTACT TRANSFORMATIONS* 

J. M. FELD 

1. Introduction. Let Xi and ui} (i=l, 2, 3), be the projective co­
ordinates in plane xu of a point and line, respectively, and yi and Vi 
the coordinates of a point and line in plane yv. The planes may be 
superimposed. Let 5 be a transformation in mixed coordinates 

(1) pyi = </>i(x9 u), avi = fc(x, u), i = 1, 2, 3, 

where the <£» and the \f/i are polynomials homogeneous in the Xi of 
degrees a and c, respectively, and are also polynomials in the Ui of 
degrees b and d, respectively. This transformation is said to be bira-
tional if from (1) it is possible to obtain the inverse s - 1 given by 

(2) px% = 4>l (y, v), a'ut = ^ / (y, v), i = 1, 2, 3, 

where the <£/ and ^ / are polynomials homogeneous in the yi of de­
grees a' and c\ and in the Vi of degrees ft' and d', respectively, and 

p"yi = *iW,V), c7^ = ^ ( ^ , ^ ) . 

This transformation is a line element transformation f if each of the 
equations 

implies the other. An element transformation is a birational contact 
transformation if, in addition to the above requirements, each of the 
two systems of equations 

X Xidui = X Uidxi = 0 

and 

J2 Ji^i = X) My» = 0 
implies the other. J 

Simple examples of birational contact transformations in the plane 

* Presented to the Society, February 26, 1938. 
f A line element transformation is not a contact transformation unless it preserves 

unions. 
% The representation of line elements by means of six coordinates Xi, m is due to 

Clebsch who also gave the necessary and sufficient conditions that (1) be a contact 
transformation. Clebsch-Lindemann-Benoist, Leçons sur la Géométrie, Paris, 1883, 
vol. 3, p. 463. 
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are furnished by enlarged Cremona point transformations, Cremona 
line transformations, polar reciprocation, and combinations of these. 
That birational contact transformations, other than these types, exist 
was demonstrated by Fano who gave some examples.* Groups of bi­
rational contact transformations were first investigated by Autonne, 
who determined the finite linear and finite quadratic groups of bira­
tional transformations in the plane, f 

It is the purpose of this paper to construct and study an infinite 
mixed group of birational contact transformations in 52. I t will then 
be shown that an analogous group exists in Sn. 

2. The abelian group of birational contact transformations. 
We begin with the consideration of a certain directrix equation 

(3) E (y*/**)1'* = o, 
k an integer, (\k\ >1) , which, it will be shown, determines a bira­
tional contact transformation belonging to a group of such transfor­
mations. In §4 these transformations will be generalized to r-space, 
and in turn the directrix equations of the generalized transformations 
will be derived. 

By virtue of (3) there corresponds to every point yi in the ^-p lane 
a triangular-symmetric curve in the xw-plane.J Likewise, to every 
point Xi in the #w-plane corresponds a triangular-symmetric curve in 
the ;yz;-plane. To a generic curve in either plane corresponds the en­
velope of a family of triangular-symmetric curves in the other plane. 

Differentiating (3), first under the assumption that the y» are con­
stants and second that the Xi are constants, we obtain 

3 

(4) 2 y^xr^^^dxi = 0, 

and 
(5) X) «r 1 ' k y^- k ) l k d y i = 0. 

From (3) and (4) it follows that 

* G. Fano, Trasformazione di contatto birazionali del piano, Rendiconti delle Reale 
Accademia Nazionale dei Lincei, (6), vol. 8 (1928), p. 445. 

t L. Autonne, (1) Groupes d'ordre fini des substitutions linéaires de contact. Journal 
de Mathématique, (4), vol. 3 (1887); (2) Groupes d'ordre fini contenus dans le groupe 
quadratique crêmonien, ibid., vol. 4 (1888), pp. 177, 407; (3) Autonne's investigations 
regarding groups in S3 and Sn which appear in Annales de l'Université de Lyon, 
Science et Médecine, vol. 16, 1905. 

X Triangular-symmetric curves are those of the type (xi/ai)m-\-(oc2/a2)m-\-(xz/ai)m 

= 0. See, for instance, G. Loria, Spezielle algebraische und transzendente ebene Kurven, 
1910, vol. 1, p. 341. 
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pyi = xf+l(x2dxz — %zdx2)
k, 

(6) py2 = x£+1(xzdxi — xidxz)k, 

Pjd — x£+1(xidx2 — x2dx^)k) 

and from (3) and (5) that 

p'xi = yrik~l)(y2dyz - yzdy2)~
k, 

(7) p'x2 = yr^Hysdyx - yidyz)~
k, 

p'ocz = yz~ik~1){yidy2 - y2dyi)~k. 

Since 

U\\u2:uz = (xdx)i\(xdx)2:(xdx)z1 

viiv2:vz = (ydy)i'.{ydy)2:(ydy)z, 

we find, by substituting in (6) and (7) and then solving for Vi and Ui, 
tha t the equations of the birational contact transformation Tk and 
of its inverse 7Y1 are 

pyi = %t+lu? , i = 1, 2, 3, 

TV «rui = (fluffs) k(u2u3)
k~1, <rv2 = {xzXi)k(uzUi)k~l, 

0^3 = ( # 1 ^ 2 ) k(uiu2) k-i 

and 

P'OOI = (^23 ;3) f c~1(^2^3)A ;
? p'^2 = (y3yi)k~l(vSVi)k, 

Tr1: P'XZ = (y i^)*- 1 ^!^)* , 

a'ui = v/*1?* , i = 1, 2, 3. 

From the equations of 7^ it can be easily verified that 

pV^EjViyi = (x1X2Xz)k(UiU2U3)
k~1^2 UiXi, 

pcr^ Vidyi = (xix2xz)k(uiu2uz)
k~l[(k + 1)]C ^ ^ + &]C %idui], 

Evidently 7 \ is a birational contact transformation when k = 0, 1, so 
that the restriction previously put on k may be removed. 

The triangular-symmetric curve 

(8) (a i* i ) p + (02*2)* + (a3tf3)p = 0 

is transformed by T& into another triangular-symmetric curve, 
namely, 

(8') £ (aiyi)p/(*iH-i> = o; 
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hence Tu leaves a three-parameter family of triangular-symmetric 
curves invariant. If p' =p/(kp + l), the indices* of (8) and (8') are 
connected by the equation 

Since TQ transforms a generic element into itself, it is an identical 
transformation and will be represented by the symbol / . We note, 
furthermore, tha t 

Tk~l — T—k, TkT—k — I, TkTm = TmTk — Tk+m» 

Consequently, the transformations Tk, (k= • • • , — 2, — 1 , 0, 1, 
2, • • • ), form a commutative group, G. 

THEOREM 1. The set of oo * transformations Tk (k an integer) forms a 
discrete abelian group of birational contact transformations that leave a 
family of oo3 triangular-symmetric curves invariant. 

Let the vertices of the fundamental triangle be A\ (1, 0, 0), 
A2 (0, 1, 0), As (0, 0, 1), and let (x, u) be a generic line element. If 
A j B, C represent lines joining x to Ai, A2l As, respectively, and if D 
represents u, then the coordinates of these four lines are given by 

A: 0, #3, — x2, B: %z, 0, — xi, 

C: x2, — # i ,0 , D: uh u2, u&. 

Evidently 

XsC = — xiA + x2B, XsD — u2A + U\B. 

Therefore 
x2u2 

R(AB, CD) = 
XiUi 

If (3/, v) is the line element that corresponds to (x, u) by virtue of Tk, 
and if A', B1, C' represent lines yA\, yA2y yAz, respectively, while D' 
represents v, then the coordinates of A ', B', C'', Df are as follows: 

A': 0, xg^+V, - #2fc+W, 

B'\ xz
k+luz

h, 0, - xik+lux
h, 

C: x2
k+lu2

k, - # i f c +V, 0, 

D': (x2xz)
k(u2us)k~\ (xsXxYiusUxY-1, (xxx^^UiU^-K 

* G. Loria calls p the index of the curve (8); loc. cit., p. 329. 
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Therefore 

xtWuiC' = - x^ufA' + xi+lu$B', 

%zuzD' = xi^ui^A' + xiui~lB\ 

Consequently, 
x2u2 

R{A'B', CD') = = R(AB, CD). 
X\U\ 

In the same way it can be shown that the cross ratio that x forms with 
the points at which u intersects the sides of the fundamental triangle 
is equal to the cross ratio that the point y of the corresponding line 
element forms with the points at which v intersects the sides of the 
fundamental triangle. 

THEOREM 2. Every transformation in the group G sets up a one-to-
one correspondence between the line elements of the plane in such manner 
that, if (x, u) and (y, v) are corresponding elements, (1) the cross ratio 
that u forms with the lines joining x to the vertices of the fundamental 
triangle equals the cross ratio that v forms with the lines joining y to the 
vertices of the fundamental triangle, and dually, (2) the cross ratio that x 
forms with the points at which u intersects the sides of the fundamental 
triangle equals the cross ratio that y forms with the points at which v in­
tersects the sides of the fundamental triangle. 

The W curves 

(9) x?x?x? = C, ax + a2 + a3 = 0, 

may be regarded as limits of the triangular-symmetric curves 

aiXim + a2x2
m + a3x3

m = 0, a\ + a2 + a* = 0, a» real, 

when m—»0.* Moreover, each of these W curves has the property that 
the cross ratio of any one of its points and the three points of inter­
section of the tangent at the point with the sides of the fundamental 
triangle is constant for the curve; and dually, the cross ratio of any 
one of its tangents and the three lines joining the point of tangency 
to the vertices of the fundamental triangle is constant for the curve, f 

* Cesàro-Kowalewski, Vorlesungen über natürliche Geometrie, Leipzig, 1901, p. 
130. 

t The cross ratio associated with any W curve is independent of C, its value be­
ing — ai/a}, (tT^j), where the subscripts depend on the sequence of the elements form­
ing the cross ratio. To a given cross ratio correspond oo1 curves of the family (9), 
so that (9) constitutes a two-parameter family. It should be noted that only the ratios 
of the ai and not the ai themselves are significant as parameters. See F. Klein, 
Vorlesungen über Höhere Geometrie, Berlin, 1926, p. 170. 
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Consequently we can add the following corollary to Theorem 2: 

COROLLARY. The birational contact transformations of group G trans­
form each member of a two-parameter family of W curves into another 
member of the same family possessing the same characteristic cross ratio. 

3. The oo * involutory birational contact transformations. The 
directrix equation 

determines a birational contact transformation Sk the equations of 
which are obtained in the same manner as were the equations of Tk' 

py{ = xtut*1, 

Sk: vvi = {x2xz)
k~\u2ui)k, av2 = (^s^i)*""1^^)*, 

<rvz = (xix2)
k~1(uiu2)

k
f i = 1, 2, 3, 

and 

p'xi = yfvt*1, 

Sk~l: <r'«i = (y2yz)k~Kv2vz)k, a'u2 = (yzyuk~l{vzvi)k, 

a'lH = ( y i y î ) * " 1 ^ ) * , * = 1, 2, 3. 

From the equations of Sk it follows that 

and 

PCT £ y%dVi = — (XiX2X9)
k~1(UiU2Uz)k[(k — 1)X) ^i^^i + ^ £ # i ^ i ] , 

pa- £ Vidyi = (xxx2x3)
k-'1(uiu2us)

k[k^2 Uidxi + (k + 1 ) £ ^Jwi] , 

I t is apparent that £& is an involutory birational contact transfor­
mation. By means of Sk the oo3 triangular-symmetric curves (8) are 
transformed into 

(8") £ (yi/ai)*"****-» = 0. 
i = i 

If the index of (8") is represented by pf, it is seen that the indices of 
a triangular-symmetric curve and its transform by Sk are connected 
by the equation 

1 1 
— + —= k + 1. 
P P 
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à k^n 1 k—n y 

an* k == ^ n — k > 

SkTk = P, 

PSkP = S_*, 

« = 7, 

J- k^n = 1 n^k 

SkP — Tk, 

ànl- k^n ~ 1 —k* 

S0 = P, 
= : : »J k+n j 

P5*A; = T-kj 

Four triangular-symmetric curves are left invariant by Sk, namely, 
3 

E ± (^-)2/(/b+1) = o. 

Regard S& as a substitution, and let 5fc5w represent the effect of 
substitution 5* followed by Sn. Let P represent the enlarged polarity 
pyi — Ui, crVi = Xi. Then it easy to show that 

(10) 

The ooi birational contact transformations Sk, (k an integer), do not 
form a group, but the aggregate set of the 5& and the Tn form a 
mixed group Y of which G is evidently an invariant subgroup. 

THEOREM 3. The set of co1 involutory birational contact transforma­
tions Sk and the set of oo1 birational contact transformations Tn together 
form a mixed group V which contains G as an invariant subgroup. 

For any integer c the set of transformations TkC obviously forms a 
group Gi, a subgroup of G. Moreover, the set of transformations in Gi 
and the set Skc together form a group Ti, a subgroup of V. If we set 
up a one-to-one correspondence between the members of Tx and T, 
such that Tkc and Tk correspond to one another and Skc and Sk also 
correspond to one another for all integral values of k, it is seen, in 
view of the relationships given in (10), that I \ and V are isomorphic 
and so are G\ and G. 

If (x} u) and (y, v) are a pair of corresponding line elements with 
respect to S&, it can be shown, as it was for Tkl that the cross ratio 
formed by u and the lines joining x to the vertices of the fundamental 
triangle is equal to the cross ratio formed by v and the three lines 
joining y to the vertices of the fundamental triangle, and a similar 
result holds in the dual case. 

THEOREM 4. Every transformation in T preserves the cross ratio 
formed by the line of a generic line element and the joins of its point with 
the vertices of the fundamental triangle; and dually, every transformation 
in r preserves the cross ratio formed by the point of a generic line ele­
ment and the intersections of its line with the sides of the fundamental tri­
angle. 

I t was shown above that the Tk leave the two-parameter family of 
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W curves (9) invariant. For the same reason the Sk leave the same 
family invariant.* Consequently, we add the following corollary: 

COROLLARY. The transformations in Y leave a two-parameter family 
of W curves invariant. 

It is interesting to observe that Sn and Tn are determined by other 
directrix equations in addition to those indicated above, f For in­
stance, the directrix equations 

E (3W)1/ (n+1) = 0, E (w) 1 / ( 1 ~ n ) = 0 , E (Vi/xi)-u» = 0 

determine Sni whereas 

E (y**01/(w+1) = 0, E (*w)1/(1-n) = 0, E (vi/ui)-1'» = 0 

determine Tn. 

4. Extension to higher space. The transformations Tn and Sn 

have analogs in higher spaces. Thus in r-space, the analog of Tn is 
given by 

1 
(11) Tn: pji = xf+W , avi = , i = 1, 2, • • • , r + 1, 

/ y .'M ni , — A 

and the analog of Sn is given by 

(12) Sn: py% = x?Uin+1, av{ = —-, i = 1, 2, • • • , r + 1. 
-V . 1 — 1 / » / .W 

From the first r + 1 equations in (11) it follows that pyi/xi = xrlu^. 
Therefore, using the relationship ^UiXi = 0, we obtain a directrix 
equation of Tn in the form 

E (yi/*<)1,n = o. 
t=i 

From the second set of r + 1 equations in (11) the directrix equation 
of Tn in line coordinates is found to be 

E («<A01/n = o. 
t=i 

Directrix equations of Sn in mixed point and line coordinates, found 

* A detailed proof appears below in connection with a discussion of these transfor­
mations in r-space. 

t Autonne, Journal de Mathématique, vol. 4 (1888), shows that every contact 
transformation in mixed coordinates is determined by four directrix equations (pri­
mordiales), namely, point-punctual, point-linear, line-punctual, line-linear. 
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in the same manner, are 

E (yi/ui)lln = o 
t=i 

and 

E (^M)1/n = o. 
i= l 

The directrix equations of each of these transformations can be ex­
pressed in two other forms, as was indicated above in the planar case. 

The aggregate of birational contact transformations, Tn and Sn {n 
an integer), can be shown to constitute a group T that has an in­
variant abelian subgroup G composed of the transformations Tn> The 
transformation Sn is involutory, interchanges the oor+x varieties in 
(13), replacing 

r+l 

(13) E M1'* = 0 

by 

E (y^a*)*'**"**-1' = 0, 

and leaves each variety in the set 

E ± (^)2/(n+1) = o 

invariant. On the other hand, Tn transforms the family (13) into it­
self, replacing (13) by 

E (a<y<)*/(n,H-1) = 0. 

Because these statements can be proved in the same way that their 
analogues regarding Sn and Tn in the plane were proved, no verifica­
tion is offered. 

Let us consider the <*>r varieties 

(14) F = JIy7 = K, 2>< = 0, 
t - 1 1 

K constant. This family is evidently a generalization in r-space of the 
W curves discussed above.* I t will be proved that this family is left 
invariant by the transformations in T. First we show that T leaves 
(14) invariant. 

* Surfaces of this type in three-space were investigated by Lie and Klein, Comptes 
Rendus de TAcadémie des Sciences, 1870. 
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Let Vit (̂  = 1> 2, • • • , r + l ) , be the coordinates of the hyperplane 
tangent to F a t ^ ; then 

dF a{K 
(15) aV{. = — ~ = ; 

dyi ji 

where a is a constant of proportionality. Eliminating the Vi from (15) 
and from 

1 
(TVi = • ) 

/y .ri/tj ,n—J-

we obtain 

ayi = diXfuf^K. 

If we let the new constant of proportionality absorb the constant K> 
and if we drop the prime, this equation becomes 

(16) ayi = diXtuï1-1. 

The elimination of the Ui from (16) and pyi = Xin+lut results in 

(17) pyi = a?Xi. 

Substituting from (17) in (14) we obtain the transform of (14), 
namely 

r+l r+1 rJ-1 

I I aT* H x? = K, J2 ai = 0. 
1 1 l 

In the same way it can be proved that Sn transforms (14) into 

r+ l r+l , . r+ l 

KYI %ï% = I I a? * , 1 2 ^ = 0
> 

1 1 1 

so that all the members of V transform this family into itself.* 

N E W YORK C I T Y 

* Continuous (Lie) groups in which the discrete groups r and r are immersed will 
be considered in a subsequent paper. 


