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A NOTE ON LINEAR TOPOLOGICAL SPACES*
D. H. HYERS

A space T is called a linear topological space if (1) T forms a lineart
space under operations x+y and ax, where x,y¢I" and « is a real
number, (2) T is a Hausdorff topological space,} (3) the fundamental
operations ¥+ and ax are continuous with respect to the Hausdorff
topology. The study§ of such spaces was begun by A. Kolmogoroff
(cf. [4]. Kolmogoroff’s definition of a linear topological space is
equivalent to that just given). Kolmogoroff calls a set S € 7" bounded,
if for any sequence x,eS and any real sequence «, converging to 0
we have lim, ., o,x, =0, where 0 is the zero element of 7. He then
shows that a linear topological space T reduces to a linear normed
space|| if and only if there exists in 7" an open set which is both
convexY and bounded. In this note, the characterization of other
types of spaces among the class of linear topological spaces is studied.
Spaces which are locally bounded, that is spaces containing a bounded
open set, are found to be “pseudo-normed” on the one hand, and
metrizable on the other, but not in general normed. Fréchet spaces,
or spaces of type (F), are characterized. The main result of the paper
is that a linear topological space T is finite dimensional, and hence
linearly homeomorphic to a finite dimensional euclidean space, if and
only if T contains a compact, open set. This of course is a generaliza-
tion to linear topological spaces of the well known theorem of F,
Riesz for the space of continuous functions.

We first give some needed properties of bounded sets. The follow-
ing notations will be used throughout. We denote by «.S the set of
all ax with xeS; by x+.S, the set of all elements x4y where y ranges
over .S; by S1+S:, the set of all x+y with xeS1, yeS,.

THEOREM 1. A4 set S of a linear topological space is bounded if and
only if, given any neighborhood U of the origin, there is an integer v such
that || <1/v implies aS < U.

* Presented to the Society, April 3, 1937.

t Cf., for example, [1], p. 26. Numbers in brackets refer to the bibliography at the
end of the paper.

1 Cf. [2], pp. 228-229, axioms (A), (B), (C), (5); or [3], pp. 43 and 67.

§ Important instances of a linear topological space were studied by J. von Neu-
mann several years before Kolmogoroff's paper was published. Cf. Mathematische
Annalen, vol. 102 (1930), pp. 370-427. See also [5].

II Cf. [1], p. 53.

9 A set Sis convex if and only if %,yeS and 0 <a <1 imply ax+ (1 —a)yeS.
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Proor. The condition of the theorem is sufficient, for suppose that
it is satisfied. Then if ax—0, x)eS, we see, for any chosen neighborhood
U of the origin 6§, that anxxeU for all X for which |ax| <1/». That is,
limy.,oxn=60. The condition is necessary. For, assume that S is
bounded, but that the condition of the theorem does not hold. Then
for some U and any integer » >0, there exists x,6S, and a real o, with
|oz,,| <1/v such that a,x,éU. Therefore a,—0 with 1/, but a,x, does
not converge to f. That is, S is not bounded. This contradiction
proves the necessity of the condition.

This theorem provides us with an alternative definition of bounded-
ness. For other equivalent definitions see [5] and [6]. See also [7].

THEOREM 2. A compact set of a linear topological space is bounded.

Proor. Let Sc T be compact, so that every infinite subset of S
has a limit point in 7. Assume, contrary to the theorem, that S is
not bounded. Let U be any chosen neighborhood of the origin 6. By
denying the definition of boundedness, we are led to a sequence
a,—0 and a sequence x,¢S, with a,x,eU, for v=1, 2, - - - . But, since
S is compact, there is a limit point p of the infinite sequence x,. By
the continuity of the function ax at a=0, x =9, there exists a § >0
and a neighborhood V of p such that aV e U for |a| <8. Since
is a limit point of the sequence x,, there is an infinite subsequence
x,, such that x,eV for all k. For sufficiently large x we have |a,,| <38,
and therefore o, %, €0,V € U, contrary to the fact that e,x,eU. This
contradiction proves the theorem.

DEFINITION. A linear space E will be said to be pseudo-normed
if corresponding to each xeE there is a real number |x| with the
properties:

(i) |*|=0; |*| =0 implies x =6,

(i) |ax| =|a||x| (where |a| is the absolute value of @),

(iii) if |x|—0, || =0, then |x+y|—0.

A linear topological space T will be called pseudo-normable if it can
be pseudo-normed in such a way that the topology according to the
pseudo-norm is equivalent to the original Hausdorff topology.

THEOREM 3. Every pseudo-normed linear space is a locally bounded
linear topological space. Conversely, if a linear topological space con-
tains a bounded open set, then the space is pseudo-normable.

Proor: Let E be a pseudo-normed space and for any chosen «
consider the “sphere” Iy—xl <a. Denote by U(x; a) the set of points
g of this sphere for each of which there exists a positive & such that
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|w—z| <8 implies |w—x| <a. It is easy to verify that E is a Haus-
dorff space with neighborhoods U(x; a), and that the operations of
vector addition and scalar multiplication are continuous, so that E
is a linear topological space. Property (iii) of the pseudo-norm is used
in proving both the Hausdorff separation axiom and the continuity
of addition. Local boundedness now follows from property (ii).

On the other hand, let T be a locally bounded linear topological
space, and suppose that U is a bounded open set. Without loss of
generality we may suppose that U contains the origin, and that
U=(—1)U. Then the sets aU, a0, are all open, and clearly form
a complete neighborhood system of the origin. Put |xl =g.lb. |a| ,
xeaU, and it follows without difficulty that the postulates for a
pseudo-normed space are satisfied. Next, for any integer » >0 con-
sider the set |x| <1/». By definition of ||, this is the set of all »
such that xea U, |al <1/v, and hence* the set |x| <1/v is open. Now
by Theorem 1 and the fact that U is bounded, for any neighborhood
V of the origin there is an integer v =»(V) such that Ial <1/v implies
aU c V. Hence the sphere |x| <1/v, being the union of the sets aU
for which |a| <1/, is contained in V, and the spheres |x| <1/» form
a complete neighborhood system of the origin. Thus the topology
according to the pseudo-norm is equivalent to the original Hausdorff
topology.

CoROLLARY 1. A4 locally bounded linear topological space satisfies the
first countability axiom.

COROLLARY 2. If T is locally bounded, then a set S < T is bounded if
and only if there is a u>0 such that xeS implies |x| < ph

THEOREM 4. A wnecessary and sufficient condition that a linear
topological space be finite dimensional is that it contain a non-empty
set which is both open and compact.

ProoF. The necessity is immediate, since every finite dimen-
sional linear topological space (a linear space with a “finite basis”
(%1, - - -, x,) such that every element is uniquely expressible in the
form D_x_jonx%) is linearly homeomorphic to a finite dimensional
euclidean space.t To prove the sufficiency, let U be a compact open
set containing the origin. By Theorem 2, U is bounded, and hence T
is pseudo-normable by Theorem 3. If S is any bounded set of T,

* [7], Theorem 1.2. Special use is made of the continuity of ax in proving this
theorem.
t For the proof see [8].
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then for some o we have ScalU (Theorem 1), so that S is compact,
being a subset of the compact set aU. Also, from Corollary 1, every
limit point is the limit of a convergent sequence. Hence every
bounded sequence has a convergent subsequence, where the con-
vergence is taken according to the pseudo-norm. From here on, with
the aid of Corollary 2, the proof follows that of a similar result for
the linear normed space of continuous functions due to F. Riesz,*
and will be omitted.

CoOROLLARY 3. 4 linear topological space T is linearly homeomorphic
to a finite dimensional euclidean space if and only if T is locally compact.

A theorem on metrizability of “Hausdorff groups” has been proved
by G. Birkhoff (see [9]), which states that a Hausdorff group is
metrizable if and only if the first countability axiom is satisfied.
Since a linear topological space is a commutative Hausdorff group
under addition, we are led to the following theorem, characterizing
spaces of type (F). For the definition of these spaces see [1], page 35.

THEOREM 5. 4 space E is a space of type (F) if and only if E is a
sequentially completet linear topological space which satisfies the first
countability axiom.

PRroOF. Let T be a “sequentially complete” linear topological space,
satisfying the first countability axiom. Then by G. Birkhoff’s metri-
zation theorem for Hausdorff groups, I" is metrizable. Moreover
the metric (x, ) exhibited by Birkhoff can be easily shown to have
the property (x—v, 0) =(x, y). Therefore T is a linear space with a
metric (x, y) satisfying (x—y, 0) =(x, ¥) and such that ax is con-
tinuous on both the left and the right. Hence, since T is supposed
complete, it is a space of type (F).

Conversely, let E be a space of type (F), so that E is a complete
metric space with a metric (x, ¥) which is invariant under translation,
and such that the function ax is continuous in « and x separately.
In order to prove that E is a linear topological space, it is sufficient
to show that ax is a continuous function of its two variables jointly.
This may be established by an argument involving sets of the second
category, very much like that used by D. Montgomery{ in a similar
connection, and the details will be omitted here.

From Corollary 1 we have the following corollary:

* [11], p. 75, Lemma 2, and p. 78, Lemma 5.

t [s], p. 10.
1 [10]. See especially the proof of the lemma on p. 880.
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COROLLARY 4. A locally bounded linear topological space is metrizable
by means of a metric satisfying (x, y) =(x—y, ).

From Theorem 3 and Corollary 4 we have the result stated in the
introduction, namely, that a locally bounded linear topological space
is both pseudo-normable and metrizable, the topologies according to
the pseudo-norm, the metric, and the original Hausdorff neighbor-
hoods being equivalent. However, not every locally bounded space
is normable, as is shown by the pseudo-normed space Hj; of all
infinite dimensional vectors x = (x, X2, &3, - - - ) for which the series
o 1| %,| V2 converges, and where |x| ={>_,~,|x,|2}2 For Tycho-
noff has shown* that this space is %ot locally convex, and hence not
normable, by Kolmogoroff’s normability theorem.
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