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A NOTE ON LINEAR TOPOLOGICAL SPACES* 

D. H. HYERS 

A space T is called a linear topological space if (1) T forms a linear f 
space under operations x+y and ax, where x,yeT and a is a real 
number, (2) T is a Hausdorff topological space,J (3) the fundamental 
operations x+y and ax are continuous with respect to the Hausdorff 
topology. The study § of such spaces was begun by A. Kolmogoroff 
(cf. [4]. Kolmogoroff's definition of a linear topological space is 
equivalent to that just given). Kolmogoroff calls a set 5 c T bounded, 
if for any sequence xveS and any real sequence av converging to 0 
we have lim,,.^ avxv = 0, where 6 is the zero element of T. He then 
shows that a linear topological space T reduces to a linear normed 
space|| if and only if there exists in T an open set which is both 
convex^ and bounded. In this note, the characterization of other 
types of spaces among the class of linear topological spaces is studied. 
Spaces which are locally bounded, that is spaces containing a bounded 
open set, are found to be "pseudo-normed" on the one hand, and 
metrizable on the other, but not in general normed. Fréchet «paces, 
or spaces of type (F), are characterized. The main result of the paper 
is that a linear topological space T is finite dimensional, and hence 
linearly homeomorphic to a finite dimensional euclidean space, if and 
only if T contains a compact, open set. This of course is a generaliza­
tion to linear topological spaces of the well known theorem of F. 
Riesz for the space of continuous functions. 

We first give some needed properties of bounded sets. The follow­
ing notations will be used throughout. We denote by aS the set of 
all ax with xeS; by x + 5, the set of all elements x+y where y ranges 
over S; by S1 + S2, the set of all x+y with xeSi, yeSz. 

THEOREM 1. A set S of a linear topological space is bounded if and 
only if, given any neighborhood U of the origin, there is an integer v such 
that \a\ <l/v implies aSc U. 

* Presented to the Society, April 3, 1937. 
t Cf., for example, [l ], p. 26. Numbers in brackets refer to the bibliography at the 

end of the paper. 
t Cf. [2], pp. 228-229, axioms (A), (B), (C), (5); or [3], pp. 43 and 67. 
§ Important instances of a linear topological space were studied by J. von Neu­

mann several years before Kolmogoroff's paper was published. Cf. Mathematische 
Annalen, vol. 102 (1930), pp. 370-427. See also [5]. 

|| Cf. [ l ] ,p .53 . 
1T A set S is convex if and only if x,yeS and 0 < a < l imply ax-\-(l — a)yeS. 
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PROOF. The condition of the theorem is sufficient, for suppose that 
it is satisfied. Then if a\—>0, x\eS, we see, for any chosen neighborhood 
U of the origin 0, that a\X\eU for all X for which | a\\ < 1/v. That is, 
\im\^a\X\ = d. The condition is necessary. For, assume that S is 
bounded, but that the condition of the theorem does not hold. Then 
for some U and any integer v>0, there exists xveS, and a real av with 
|a„| <l/v such that avxvlU. Therefore a„—>0 with 1/V, but avxv does 
not converge to 6. That is, S is not bounded. This contradiction 
proves the necessity of the condition. 

This theorem provides us with an alternative definition of bounded-
ness. For other equivalent definitions see [5] and [ó]. See also [7]. 

THEOREM 2. A compact set of a linear topological space is bounded. 

PROOF. Let 5 c T be compact, so that every infinite subset of 5 
has a limit point in T. Assume, contrary to the theorem, that S is 
not bounded. Let V be any chosen neighborhood of the origin 6. By 
denying the definition of boundedness, we are led to a sequence 
av—*0 and a sequence xveS, with avxveU, for p = l, 2, • • • . But, since 
5 is compact, there is a limit point p of the infinite sequence xv. By 
the continuity of the function ax at a = 0, x = p, there exists a 8 > 0 
and a neighborhood V of p such that aVc U for \a\ <S. Since p 
is a limit point of the sequence x„, there is an infinite subsequence 
x„K such that xVKeV for all K. For sufficiently large K we have |ce„J <ô, 
and therefore aVlixVlieaVKV c U, contrary to the fact that avxvlU. This 
contradiction proves the theorem. 

DEFINITION. A linear space E will be said to be pseudo-normed 
if corresponding to each xeE there is a real number \x\ with the 
properties : 

(i) |#( ^ 0 ; \x\ = 0 implies x — di 

(ii) I ax I = | a | \x\ (where | a | is the absolute value of a) , 
(iii) if \x\—»0, \y\—>0, then |x+;y|—K). 

A linear topological space T will be called pseudo-norniable if it can 
be pseudo-normed in such a way that the topology according to the 
pseudo-norm is equivalent to the original Hausdorff topology. 

THEOREM 3. Every pseudo-normed linear space is a locally bounded 
linear topological space. Conversely, if a linear topological space con­
tains a bounded open set, then the space is pseudo-normable. 

P R O O F : Let E be a pseudo-normed space and for any chosen a 
consider the "sphere" \y — x\ <a. Denote by U(x\ a) the set of points 
z of this sphere for each of which there exists a positive ô such that 
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I w — zI < 5 implies |w—#| <a. It is easy to verify that E is a Haus­
dorff space with neighborhoods U(x; a), and that the operations of 
vector addition and scalar multiplication are continuous, so that E 
is a linear topological space. Property (iii) of the pseudo-norm is used 
in proving both the Hausdorff separation axiom and the continuity 
of addition. Local boundedness now follows from property (ii). 

On the other hand, let T be a locally bounded linear topological 
space, and suppose that U is a bounded open set. Without loss of 
generality we may suppose that U contains the origin, and that 
U=( — 1)U. Then the sets all, a^O, are all open, and clearly form 
a complete neighborhood system of the origin. Put \x\ =g.l.b. \a\, 
xealf, and it follows without difficulty that the postulates for a 
pseudo-normed space are satisfied. Next, for any integer v>0 con­
sider the set \x\ <1/V. By definition of \x\, this is the set of all x 
such that xealf, \a\ <l/v, and hence* the set \x\ <l/v is open. Now 
by Theorem 1 and the fact that U is bounded, for any neighborhood 
F of the origin there is an integer v = v(V) such that \a\ <l/v implies 
aUc V. Hence the sphere \x\ <1/V, being the union of the sets all 
for which | a \ <l/*>, is contained in V, and the spheres \x\ < 1/V form 
a complete neighborhood system of the origin. Thus the topology 
according to the pseudo-norm is equivalent to the original Hausdorff 
topology. 

COROLLARY 1. A locally bounded linear topological space satisfies the 
first countability axiom. 

COROLLARY 2. If T is locally bounded, then a set S cT is bounded if 
and only if there is a JJL>0 such that xeS implies \x\ </x. 

THEOREM 4. A necessary and sufficient condition that a linear 
topological space be finite dimensional is that it contain a non-empty 
set which is both open and compact. 

PROOF. The necessity is immediate, since every finite dimen­
sional linear topological space (a linear space with a "finite basis" 
(xi, • • • , xv) such that every element is uniquely expressible in the 
form ^2\=IOÙ\X\) is linearly homeomorphic to a finite dimensional 
euclidean space.f To prove the sufficiency, let U be a compact open 
set containing the origin. By Theorem 2, V is bounded, and hence T 
is pseudo-normable by Theorem 3. If 5 is any bounded set of T, 

* [7], Theorem 1.2. Special use is made of the continuity of ax in proving this 
theorem. 

t For the proof see [8]. 
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then for some a we have S call (Theorem 1), so that S is compact, 
being a subset of the compact set aU. Also, from Corollary 1, every 
limit point is the limit of a convergent sequence. Hence every 
bounded sequence has a convergent subsequence, where the con­
vergence is taken according to the pseudo-norm. From here on, with 
the aid of Corollary 2, the proof follows that of a similar result for 
the linear normed space of continuous functions due to F. Riesz,* 
and will be omitted. 

COROLLARY 3. A linear topological space T is linearly homeomorphic 
to a finite dimensional euclidean space if and only if T is locally compact. 

A theorem on metrizability of "Hausdorff groups" has been proved 
by G. Birkhoff (see [9]), which states that a Hausdorff group is 
metrizable if and only if the first countability axiom is satisfied. 
Since a linear topological space is a commutative Hausdorff group 
under addition, we are led to the following theorem, characterizing 
spaces of type (F). For the definition of these spaces see [ l ] , page 35. 

THEOREM 5. A space E is a space of type (F) if and only if E is a 
sequentially complete^ linear topological space which satisfies the first 
countability axiom. 

PROOF. Let T be a "sequentially complete" linear topological space, 
satisfying the first countability axiom. Then by G. BirkhofFs metri-
zation theorem for Hausdorff groups, T is metrizable. Moreover 
the metric (#, y) exhibited by Birkhoff can be easily shown to have 
the property (x—y, 6) = (x, y). Therefore T is a linear space with a 
metric (x, y) satisfying (x—y} d) = (x, y) and such that ax is con­
tinuous on both the left and the right. Hence, since T is supposed 
complete, it is a space of type (F). 

Conversely, let E be a space of type (F), so that E is a complete 
metric space with a metric (x, y) which is invariant under translation, 
and such that the function ax is continuous in a and x separately. 
In order to prove that E is a linear topological space, it is sufficient 
to show that ax is a continuous function of its two variables jointly. 
This may be established by an argument involving sets of the second 
category, very much like that used by D. Montgomery{ in a similar 
connection, and the details will be omitted here. 

From Corollary 1 we have the following corollary : 

* [11 ], p. 75, Lemma 2, and p. 78, Lemma 5. 
t [5], p. 10. 
% [l0]. See especially the proof of the lemma on p. 880. 
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COROLLARY 4. A locally bounded linear topological space is metrizable 
by means of a metric satisfying (x, y) = {x — y,6). 

From Theorem 3 and Corollary 4 we have the result stated in the 
introduction, namely, that a locally bounded linear topological space 
is both pseudo-normable and metrizable, the topologies according to 
the pseudo-norm, the metric, and the original Hausdorff neighbor­
hoods being equivalent. However, not every locally bounded space 
is normable, as is shown by the pseudo-normed space i7i/2 of all 
infinite dimensional vectors x — {xu x2, x3, • • • ) for which the series 
2 r « i | ^ | 1 / 2 converges, and where \x\ = {^jT-i l^l1 / 2}2 . For Tycho-
noff has shown* that this space is not locally convex, and hence not 
normable, by KolmogorofFs normability theorem. 
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