LINEAR OPERATIONS ON FUNCTIONS OF BOUNDED VARIATION

T. H. HILDEBRANDT

The object of this note is to give a form for the most general linear continuous operation on the space of functions of bounded variation on a finite interval, say $0 \le x \le 1$, the norm of the space being the total variation.

This form is obtained by setting up an equivalent space. For this purpose let \Im be the class of elements I consisting of any finite number of non-overlapping intervals i_1, \dots, i_n of the interval (0, 1). If (x_p, y_p) are endpoints of i_p , define the function of interval sets $\beta(I) = \sum_{p=1}^n [\alpha(y_p) - \alpha(x_p)]$ corresponding to the function $\alpha(x)$ of bounded variation. Then $\beta(I)$ is a bounded function on \Im . Define $\|\beta\|$ in the usual way as the least upper bound of $|\beta(I)|$ for I on \Im . Then the space \Im of additive set functions β thus normed is equivalent to the space \Im of functions $\alpha(x)$ of bounded variation with $\|\alpha\| = V\alpha = \int_0^1 |d\alpha|$,* for obviously $\|\beta\| \le \|\alpha\| \le 2\|\beta\|$. Further, if α_1 corresponds to β_1 and α_2 to β_2 , then $\beta_1 + \beta_2$ corresponds to $\alpha_1 + \alpha_2$ and α_3 to α_4 , and conversely.

It is now an easy matter to determine the most general linear functional operation on the space \mathfrak{B} . Following the lines of reasoning of my paper On bounded linear functional operations,† one finds that for any linear continuous operation L on the space \mathfrak{B} there exists an additive function γ of sets E of elements I, such that $L(\beta) = \int \beta d\gamma$, the integral being of the L or S type as defined in the paper quoted, and extended over the class of all subsets of elements of \mathfrak{F} . Because of the relationship between the functions β and α this gives the most general linear operation in the space \mathfrak{A} .

It might be noted that a similar reasoning applies to the set of interval functions $\alpha(i)$ where $\sum_{p=1}^{n}\alpha(i_p)=\beta(I)$ is a bounded function on \Im ; or, more generally, that a similar result holds in the space of bounded functions on a general range, with norm the least upper bound of the absolute value of the function on the range.

University of Michigan

^{*} Note that in the space $\mathfrak A$ two functions for which $V(\alpha_1-\alpha_2)=\int \left|d(\alpha_1-\alpha_2)\right|=0$ are regarded as equivalent. To obtain uniqueness, the condition $\alpha(0)=0$ can be added. If we wish that $\|\alpha\|=0$ imply $\alpha=0$ for all x, we may choose $\|\alpha\|=|\alpha(0)|+V\alpha$. The space $\mathfrak B_1$ corresponding is defined by $\beta_1(I)=\alpha(0)+\sum_{p=1}^n \left[\alpha(y_p)-\alpha(x_p)\right]=\alpha(0)+\beta(I)$ and $\|\beta_1(I)\|=|\alpha(0)|+\|\beta(I)\|$. Reasoning similar to the above can be carried through in this case also.

[†] Transactions of this Society, vol. 36 (1934), pp. 868-875.