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G. M. MERRIMAN 

1. Introduction. Starting with the well-known fact that the set of 
polynomials {zn} is an orthogonal set on every circle \z \ =R, there 
has recently been some consideration of the general problem sug­
gested, that of the existence of sets of polynomials in the complex 
variable which are orthogonal, with respect to suitable norm func­
tions, simultaneously on more than one curve. Terming a set of 
polynomials {pn(z)} canonical on a rectifiable Jordan curve C with 
respect to the positive continuous norm function n{z) provided it is 
found by orthogonalizing on C the set {zn} with respect to n(z), and 
provided the coefficient of zn in pn(z) is chosen positive, we list the 
previous resultsf which we shall find pertinent to our purpose: 

(1) Walsh J and Szegö § have shown, independently and by differ­
ent methods, that if the same set of polynomials is canonical on two 
distinct curves then one of the curves is a "level curve" (Kreisbild)|| 
in the conformai mapping of the region outside the other curve onto 
the exterior of a circle, the points at infinity corresponding to each 
other. 

(2) Szegö^f has exhibited all canonical sets of polynomials in the 
complex variable, each set canonical on all level curves of a given 
family; there are only five essentially different types of such sets. 

While this last result is definitive in connection with sets of poly­
nomials canonical simultaneously on a whole family of level curves, 
the general problem of the existence of sets of polynomials canonical 
simultaneously on only a finite number of curves has not yet been 
discussed; in the references cited above, Walsh (p. 136) and Szegö 
(p. 196) both suggest its study. It is the purpose of the present paper 

* Presented to the Society, September 1, 1936. 
t A complete list of results on this problem will be found in §1 of Walsh and 

Merriman, Note on the simultaneous orthogonality of harmonic polynomials on several 
curves, Duke Mathematical Journal, vol. 3 (1937), pp. 279-288. 

| J. L. Walsh, Interpolation and Approximation by Rational Functions in the Com­
plex Domain, American Mathematical Society Colloquium Publications, vol. 20, 
p. 134, Theorem 11. 

§ G. Szegö, A problem concerning orthogonal polynomials, Transactions of this 
Society, vol. 37 (1935), pp. 196-206, Theorem I. 

|| Cf. Walsh, loc. cit., §4.1. 
H Loc. cit., pp. 197-198. 
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to consider this problem in the special case that the curves involved 
are concentric (see (1) above) circles with center at the origin. To 
state our results briefly, it is shown that if a set of polynomials in the 
complex variable is a canonical set simultaneously on two distinct con­
centric circles \z\=Rj>r, C/ = l, 2), then the set is canonical on all 
circles \z\—R>r concentric with these. Thus, there exist no sets of 
polynomials in the complex variable canonical simultaneously on only 
a finite number (>1 ) of concentric circles. 

2. Preliminaries. We consider the set of polynomials 

œ j . / \ 1 *. / \ (») I (w) i I (n) n—1 . n 

po{z) = 1, pn{z) = a0 + ai z + • • • + an-!Z + z , 
n = 1, 2, • • . . 

The orthogonality criterion used is 

(2) f pk(z)Mzjn(z) | <fe | = 0, k j* I, 

where* n{z) denotes the real, positive, continuous norm function, 
alterable by multiplication by a positive constant. The function n(z) 
can be expressed as n{z) = \D(z) |2, where D(z) is analytic and non-
vanishing outside a basic circle | s | = r , the point s=oo included. 
Since D(z) depends only on the polynomials pn(z), orthogonality on 
several circles yields one and the same D{z) ; thus, with allowance for 
the possible multiplicative constant, we must have w,-(s) = \D(z) |2, 
( j = l , 2 , • • • ), on each circle of orthogonality |z | =Rj,(j=l,2, • • • ). 
The whole configuration being studied may be subjected to a linear 
integral transformation. 

The method used is that of determining, from the hypothe­
sis of orthogonality simultaneously on the two distinct circles 
\z\=Rjy(j = l, 2), necessary values of the coefficients a/ n ) , (i = 0, 
1, • • • tn — 1; n = l,2, • • • ), of the polynomials (1) and a necessary 
form for a suitable norm function on the two circles. This deter­
mination leads to some one of the sets of polynomials which are 
known to be canonical f on all circles \z | =R>r: 

* The following facts concerning n(z) are digested from Szegö, loc. cit., pp. 197, 
201. 

f Szegö, loc. cit. We have for our own subsequent purposes recorded slightly more 
general sets II than those given by Szegö, resulting from a permissible linear integral 
transformation z=a~1,azf of his sets; an irrelevant constant has been removed from 
each pn(z). Sets I I , a = l , were exhibited by Szegö (Mathematische Annalen, vol. 79 
(1919), pp. 323-339) without mention of orthogonality on more than one curve, and 
by Walsh (Mémorial des Sciences Mathématiques, no. 73 (1935), p. 43) with men­
tion of orthogonality on all circles \z\ =R> \a\lfa. 
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I. On the circles | s | = 2 2 > 0 , D(z) = l, pn(z)=zn; 
II . On the circles \z\=R>\a\lla,aa positive integer, a 5*0 a complex 

constant, D{z) = (1 — az-a)~\ pn{z) =znfor 0^n<a, pn(z) = zn-a(za-a) 
for n^a. 

The set I is the limiting set of the sets II as a—•»<*> ; the orthogo­
nality of I, even on the circles |s | =i? , 0 < i ? ^ | a | l / a ! , occurs since in 
such a limiting process D(z) becomes constant, hence analytic in the 
whole plane. We thus confine our attention to the case D(z)f^l, 
that is, D(z) analytic outside \z \ =r, the point at infinity included. 
We shall choose r as the smaller, say Rh of Ri and 2?2. 

3. Two auxiliary formulas. We shall use the following form for n{z) : 

00 00 

(3) n(z) = 1 + Z ^ ' + Z 3 > ' . 

This development (3) is simply the formal Fourier development of 
the real function n(z) rearranged by means of the equations, valid 
on | JS |=JR, 

sin nd = (zn - zn)/2iRn, cos nd = (zn + zn)/2Rn. 

Of course, to obtain the form (3) we have multiplied the preceding 
development by the reciprocal of its first term, which is positive. 

This form of the norm function of sets II is,for z on | z \ —R> \ a |1 / a , 

oo oo 

(30 n(z) = 1 + X) R~-2j'aâW<* + J2 R-2l'aaW'a. 

Use of (3) permits calculation of a set of important auxiliary in­
tegrals : 

/lir1k-iR
2k+\ k > /, 

(4) f zkzln(z) \dz\ = <J2TT.R2*+S k = I, 

For example, if k>l, 

/
zkzln(z) \dz\ = R21 I zh~ln(z) \ dz \ 

\z\=R J \z\=R 

= R2lAk^ f zk~lzk~l \dz\= R2kJk-i f \dz\ = 27ri?2*+12*_,, 
J \z\=R J \z\~R 

file:///z/~R


60 G. M. MERRIMAN [February 

by use of the familiar f\z\=Rzpzg\dz | = 0, p^q. The term-by-term inte­
gration is justifiable since the Fourier development of n{z), con­
tinuous on | s |=2? , is uniformly summable (Cesàro) to n{z) on 
|s|=ie. 

4. The first steps in an induction. We proceed to the first steps in 
an inductive proof. First we have, using (4), 

/
pi(z)pQ(z)n(z) \dz\ = I (a0

(1) + z)n{z) \ dz \ 

\z\=*R J \z\=R 
= 2irR[a^ + AXR2] = 0 

for* R = Rj, (j = l, 2). Hence a0
(1) = -JiR2. Since a0

(1) is the same 
constant for the two values of R, we must have A\R2 = fay with fa a 
complex constant; thus Ai = kiR~2, necessarily, on the two circles. 
We separate these findings into two cases: 

j ( a ) fa 5* 0; a0
(1) = - fa, Pi(z) = z - fa, Ax = faR-2; 

t (b ) fa = 0; 0O
(1) = 0, p±(z) = z, Ai = 0. 

We continue with (5a) : 

f p2(z)Mz)n(z) | dz | = f [a0
(2) + <*i(2) 2 + z2]n(z) \ dz \ 

J \z\=R J \z\=*R 

= 2irR[a^ + a^J^R2 + A2R*] = 0, 

so that we have, using (5a), 

(6) <zo(2) + faai^ +A2R* = 0. 

Similarly, with use of (6), 

f p2(z)pi(z)n(z) \dz\ = \ s[a0
(2) + tfi(2) z + s2H*) | dz \ 

J \z\~R J |z|*=B 

= 27ri?[ao(2>^i^2 + tfi^i?2 + I ^ 4 J == 0, 

which yields the pair of equations 

a0
(2) faRf2 + ai<*> + *i = 0, i = 1, 2. 

These have the unique solution a0
(2) = 0 , #i(2) = — &i, which, with (6), 

gives A2 = ki2Rr\ 0" = 1, 2). We add, then, to (5a) the following in­
formation : 

* Henceforth, results involving R will be considered tacitly to be evaluated and 
valid only for R = Rj, ( j = l , 2). 

file:///z/~R
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(7) ki 7* 0; px{z) = z - kh p2(z) = z2 - k&tAx = hR~\ A2 = k?R~\ 

On the basis of (7) we proceed to find cumulatively 

(8) 

(9) 

(10) 

I p3(z)po(z)n(z) | dz | 

= 2wR[a0™ + a^liR' + a2
(3M2jR

4 + JzR
e] = 0, 

ƒ ps(z)p!(z)n(z) I dz I 

= 2wR[a0^A1R
2 + ax™ R2 + a2

( 3Mi£4 + 22R«] = 0, 

/
ps(z)p2(z)n(z) | dz | 

fz\=R 

= 2irR[a^A2R
4 + a^A^ + a*™ R* + liR*] = 0. 

From (10) and (9) we obtain the four equations 

7 = 1,2, 
(11) 

a^k? + ai^kiR? + a2<
3>#/ + JfeiJRy4 = 0, 

a0
(3)fci + a^Rj2 + a2

(8) £ii?y2 + &i2i?/ = 0 , 7 = 1, 2. 

Of these we select the first three, the augmented matrix of which 
system is 

£i2 hRi2 Ri4 - &i#i4 

h2 kiR2
2 Ré - hR2

4 

ki Rx
2 hRi2 - WR12 

M: 

We first show that the determinant 1̂23 (the subscripts indicate 
columns of M making up the determinant) is not zero; the method 
used is chosen to illustrate a later general discussion. We multiply 
the last row of dnz by ki^O and subtract the first row from the 
result; then a Laplace development according to the two-rowed de­
terminants of the first two rows yields, aside from an irrelevant non­
zero constant multiplier, dm = (R2

2 — i?i2)(| &i|2i?i2 — i?i4).Thus, since 
Ri7^R2) 1̂23 = 0 when and only when | k\ \ — R\\ but in this event we 
can interchange the rôles of R\ and R2 in the discussion to obtain a 
new determinant which, treated in the same manner as the original, 
can never vanish because now | ki \ ?£R2. 

The determinants dUi and 6?234 are zero because of the proportion­
ality of the last two columns of M. The determinant d^u= —W123. 
Hence the unique solution of the first three equations of (11) is 
&2(3) = —ku #o(8) =«i(3) = 0 ; these satisfy the fourth equation of (11). 
Used in connection with (8) these results produce A$ = k? Rj*, 
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(j = l, 2). We incorporate these findings with (7) in the necessary 
forms 

(12) 
h ¥^ 0; pi(z) = z - ki, p2(z) = z2 - kiz, pz(z) = z3 - &1Z2, (ki ^ 0; px{z 

fa J?-*, 4 , = kizR~«. 

These are the first three* polynomials and A's in set II , a = l, a = k\. 
Here, of course, for complete identification, in fact for meaning, we 
must choose \kl\

ila=\k1\<Ri (d. (3')). 

5. Continuation. We return to (5b). We now have 

pi{z)p^z)n(z) \dz\= a0
<2) + A2R* = 0, 

p2(z)pi(z)n(z) | dz\ = a^R2 = 0. 

Hence a^2) = 0, a0
(2) = — A2R

4 = — k2, k% a complex constant. The 
following two possibilities are then to be added to (5b) : 

(13) 
f (a) h = 0,k2^ 0;pi(z) = z,p2(z) = z2 - k2>Ai = Q,Ai = faR-*; 

[(b) h = k2 = 0; Pi(z) = z, />2(z) = z2, ^ i = ^2 = 0. 

Pursuing first (13a) we have the following replacements for (8), 
(9), and (10): 

(14) 

(15) 

(16) 

a„(3) + ai<«*i + J*R/ = 0, 

a^i?,-2 + ^2-R/ = 0, 

a0
mh + aJVR* = 0, 

J - 1,2, 

3 = 1, 2, 

y = i, 2. 

From the last four equations we choose the system formed by (16) 
and the first equation of (15); its augmented matrix is 

&2 

&2 

0 

0 

0 

Ri2 

Ri* 

Ré 
0 

0 

0 

- k2Ri2 

Again dnz ^ 0 , but dm and d234 are zero, while di.34 —W123. Thus 
a0(3) =Ö2(8) =o , ai<8> = — k2, uniquely, and (14) gives Az = 0. We con­
tinue (13a) as 

* That is, the polynomials and ^4's with subscripts 1, 2, 3 ; here and later we omit 
po(z) and AQ from the list since they are unity in all cases. 
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*i = 0, ^ 2 ^ 0 ; px(z) = z, p2{z) = z2 - k2, ^3(2) = z3 - &22, 
(17) 

4 i = 4 8 = 0, A2 = &2£-4. 

77^0 are the first three polynomials and A's of set II , a = 2, & = Jk2, 
|fe|1/aa=|fe|1/a<iei. 

6. Continuation. Returning to (13b), we now have the equations 
a0<

3> +Z3 i?;6 = 0, ai<«!V = 0, a2<
3>i?}

4 = 0, ( j = l , 2),_which have the im­
mediate unique solution a^z) =a2

(3) = 0 , a0
(8) = — AzR*= — &3, so that 

(13b) is continued as 

(18) 

f (a) h = k2 = 0, &3 7
e 0; ^1 = 0, ^2 = s2, ps = zz — kz\ 

Ax = A2 = 0, ^3 = /b3i^~ö; 

(b) ki = k2 = ks = 0; £1 = 2, p2 = z2, ^3 = z3; 

Ax = A2 = Az = 0. 

/ ^ (18a) 7£;e tez>£ the first three polynomials and A's in set II , a = 3, 
a = kz, \kz\ 1 / a = I &s| 1 / 3<i?i. i>z (18b) we have the first three polynomials 
and A's in all* sets I I , a>3. 

7. The general step. For the general step in the inductive proof we 
follow the lead given by (12), (17), and (18) and the italicized state­
ments following them, and assume that, on the hypothesis of or­
thogonality on the two distinct circles \z\ =R]f ( i = l , 2), the first m 
polynomials of (1) have been found, on these two circles, to be neces­
sarily identical with the first m polynomials in some specific one, 
say (0-), of the sets II , a^m, or with the first m polynomials in all 
sets II , a>m, while the norm function has been determined to the 
same extent of coincidence. We should then expect to show that the 
hypothesis implies that the first ra + 1 polynomials of (1) must be, 
on the two circles, identical with the first m + 1 polynomials in the 
specified set (cr) of II , a^gm, or in the set II , a = m + l, or in all the 
sets II , a > w + l , t while the Am+i obtained in the process is the one 
anticipated. These expectations are realized; we outline the proof. 

We first evaluate the integrals 

/
pm+i{z)pi(z)n(z) J & I = 0, i = 0, 1, 2, • • • , m. 

\*\-R 

* The first m polynomials and A's in all sets II, a>m, are the same. 
f The last two possibilities compose the "split" case analogous to (18) which, 

we recall, may lead in the limit, a—> <*>, to case I. 
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Here pm+i (z) is the (m + 1 ) th polynomial in (l),pi (z), (i= 1,2, • • • ,m), 
are the first m polynomials after po(z) = 1 in some arbitrary set (cr) 
of II , a^m, or in all sets II , a>tn, and 

(19) 

n(z) = 1 + 0 + • • • + 0 + R-*°aza + • • • + Rr2qaâqzqa 

+ 0 + • • • + 0 + R-2aaz« + • • • +R-2qaa«zqa 

00 00 

in (19) qa is the largest integral multiple of a not greater than m, 
and all ^4's with subscripts between multiples of a are zero; also we 
assume, for meaning, \a\ 1/cc<R1. The cumulative results of the in­
tegrations are the 2(m + l) equations (we have retained the vanishing 
A's for symmetry of writing) : 

f aQ<"+» + a1<"+»AiR* + a2
(m+1)A2Rf + • • • +Jw+i#;2 ( m + 1 ) = 0, 

i = 1,2, 

i = 1,2, 

i = 1,2, 

(20) 

a 0 w U J S / " + f l i ^ 1 M ^ i J S / « » + • • • +aJm+»Rf™ 

+I1R,*<m+» = Q, j = 1, 2. 

Omitting the first pair of equations in (20) since it contains the 
unknown Am+i as well as the unknowns a^m+l\ (i = 0, 1, • • • , m), 
and reading the other pairs in reverse order, we select the pair whose 
leading term is a^m+V)AqaRj2qa, ( j = l , 2), and the first one of each 
other pair. Thus we have a system of ra + 1 linear non-homogeneous 
equations in the m + 1 unknowns a/w+1), (i = 0, 1, • • • , m). The 
augmented matrix, M, of this system is displayed in skeleton form 
on page 65. In the left-hand part of M we have indicated the 
diagonal panels of zeros arising from the vanishing A1 s in n(z); in the 
right-hand part the zeros have not been inserted, the interest here 
being on the subscripts of the A's in the final columns. 

Our general argument is valid unless a>mt when the first and last 
columns of M consist exclusively of zeros; this special case we post-
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pone for the present. If a ^ m it can be shown that dy the determinant 
formed by the first m + 1 columns of Af, is not zero; the proof of this 
fact we also postpone briefly. 

Assuming, then, that rf^O, we replace the ^Ts by their values as 
given in (19). The last and the (m—a + 2)th columns of M are then 
seen* to be in the proportion — all; thus we obtain the following 
unique solution for the system chosen from (20) : 

(m+1) __ (m+1) __ (m+1) _ __ (m+1) _ (m+1) ( m + 1 ) _ _ n 
# m + l - a — """"#> #0 — 0 1 — * * ' —am-a — # m - a + 2 — ' * ' - ^ m — 0 . 

When we substitute these values in the first equation of (20), it 
becomes 

(21) - alm+l-aRHm+1-a) + Jm+li?2(w+1) = 0. 

Hence we find Zm+i = 0 if m + 1 is not a multiple of a, but if m + 1 = q'ot, 
q' a positive integer, we obtain from (21) a'aq,-l = "Âm+iR2q'a, or 
1 m + i = 1 q> a = R~2q' aaq'. These results satisfy all the equations of (20). 
Moreover, they are the expected results; and the general step in the 
induction proof is complete except for the two postponements. 

8. Non-zeroness of d. We exhibit d in skeleton form on page 
67; the elements there indicated by an asterisk we shall call "stop-
elements" ; they may be considered to involve à0 or a0, stopping the 
preceding descending sequence of powers of â in a given row or start­
ing the subsequent ascending sequence of powers of a. 

The proof that d^0 involves in general three steps. 
(i) We first multiply the (reading from the bottom) a th , 

2ath, • • • , [(q — l)a]th rows by the non-zero numbers a5"1, 
âq~2, • • • , â, respectively, so that each row now starts with 0 or aq. 
Leaving intact the (m— ga + l) th and (m — qa + 2)th rows, those 
symmetric in Ri and i?2, we subtract the first of these from each re­
maining row which starts with the element dq (this step is unneces­
sary if a>m/2). Then the first and the (a + l ) th columns have zeros 
everywhere except in the two rows left intact; and in each of the new 
rows all elements are zero except the replacements of former non-zero 
elements after the stop-elements, which now are, aside from an irrele­
vant non-zero constant multiplier, of the form 

(22) | a\rRi- Ri , 

* In the last row, for example, Àm and Âm-.a are zero together unless tn = qa; 
then iwi?i2<w+1>=a«i?i2and Àm-clRi*m-a+1'>=>a<-iRl*. 
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where t — ar+s. We develop d in the Laplace manner according to 
the two-rowed determinants of the two intact rows; again omitting 
an irrelevant non-zero constant factor, we thus reveal d as the prod­
uct of U, the two-rowed determinant formed by the first and (a + l) th 
columns of the intact rows, and its (m —l)-square algebraic comple­
ment d', since the algebraic complement of any other two-rowed 
determinant of the intact rows has one column of zeros. But 
U=d2q-1(R2

2a-R1
2a) cannot vanish because Ri^R*, so that d = 0 

when and only when d' = 0. 
(ii) If m—qa?*0, there is in the upper left-hand corner of df an 

(m — qa)-square array, [/', of which the secondary diagonal, reading 
from lower left to upper right, consists of successive even powers of 
2?i, beginning with R?, each multiplied by dq; all other elements of U' 
are zero, thus U'Ve 0. Since m—qa^.a — l,we can produce repetitions 
of U' in each block of a — 1 rows and columns reading down the left-
hand side of d' by multiplying by suitable powers of â the rows re­
peating the pattern of powers of Ri in U'. Leaving intact the rows 
containing £/', we subtract each of them from each of the later rows 
now identical with it in its first m—qa elements. As a result, every 
element below U' in the first m—qa columns is zero; beyond the 
(m — qa)th column zeros occur consistently in the altered rows until 
the stop-element is passed, while former non-zero elements beyond 
that element are replaced by elements of the form (22) and all others 
are still zero. A Laplace development of this transformed d' by the 
(m — qa)-rowed determinants of the first m—qa columns reveals that 
d' is essentially the product of t / ' ^ O and its algebraic complement 
d'\ of qa — 1 rows and columns; thus d' = 0 when and only when 
d" = 0. 

(iii) In the upper left-hand corner of d,f occurs a square array, U", 
of a —1 —(m — qa) rows and columns, which is like V' in structure. 
We now follow a procedure similar to that in (ii), replacing U' by 
U" in that argument. A final Laplace expansion according to the 
[a — 1 — (m — qa) ]-rowed determinants of the first a — \ — (m — qa) 
columns reveals that d", essentially the product of ? 7 " ^ 0 by its 
algebraic complement drn', of m— a rows and columns, vanishes when 
and only when d'" vanishes. But dnt has a secondary diagonal con­
sisting entirely of elements of form (22) with r = 2, while all elements 
above that diagonal are zero; thus d"' = 0 when and only when 
| a | 1 / a = .Ri. This last is impossible under our original choice* of 

* As a matter of fact, we can also circumvent the case | a | l / a = Ri by the argument 
employed in connection with the determinant dm in §4. 
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| a | lla<Ri] hence d'"5*0. Thus d^O as was to be proved.* 

9. The case a>m. We have only to discuss the case a>m. Here 
d = 0 since the first column is all zeros, so the preceding argument 
fails. But in this case the A3-, (j = l, 2, • • • , m), are all zero and the 
equations (20) after the first pair yield a/m+1) = 0, (j = l, 2, • • • , m). 
The first pair, now 

a0
(™+1) + Am+lR?^» = 0, j = 1, 2, 

produces in the usual way Zm +i = èm+ii?;~
2(m+1), &m+x a complex con­

stant, ao(m+1)= —km+i. Since &m+1 may, or may not, be zero, we have 
the "split" case previously mentioned; in the former event we have 
the first ra + 1 polynomials and A's in II , a = m + l, in the latter 
event we have the first m + 1 polynomials and ^4's in all sets II, 
a>rn + l. 

10. Conclusion. The general step in the induction is now estab­
lished and the proof of the form of (1) and (3) is complete. We have 
proved that if (1) is a canonical set simultaneously on two distinct 
circles |z | =Rj, ( j = l , 2; Ri<R2)1 then on those circles the set (1) 
must be identical with some set, (cr), of II , \a\ lla<Ri, or with I. But 
then, since (a) and I are canonical sets on all circles \z\ =R> \a\1/a, 
we have established the fact that (1) is a canonical set simultaneously 
on all circles \z\ =R > | a\lla if it is a canonical set on two such circles. 

T H E UNIVERSITY OF CINCINNATI 

* The first step in this proof is unnecessary if a>m/2, the second if m—qa — 0, 
the third if m— qa = a — 1. The cases w = 14, a = 4, • • • , 8 are apt illustrations of 
all the various possibilities. 


