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(U + @ = D) = f(x = 6D)F(5)} yon = 0 L.

Blissard’s remark, “An equation which has a representative
quantity is not suscepiible to any algebraic operation by which the
indices would be affected,” becomes

(D) = DY
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A linear difference expression for which the differential trans-
form is self-adjoint (anti-self-adjoint) we shall call self-adjoint
(anti-self-adjoint).t We choose two fourth order difference equa-
tions

L+(u) = p(x) [u(x 4+ 2) + u(x — 2)]
+ Mu(x + 1) + u(x — 1)] + R(x)u(x) = 0,

L~(u) = p(2) [u(z + 2) — u(x — 2)]
+ A u(x + 1) — u(x — 1)] =0,

¢y

©)

where L+(u) is self-adjoint and L~(u) anti-self-adjoint for the
range (x=a,a+1, - -,b—1;b—a=4). R(x) and p(x) are both
real, p(x) being a non-vanishing periodic function of period two;
\ is a parameter.

Let the functions (v1, ¥z, ¥, y4) constitute a fundamental set
of solutions for either (1) or (2), and (w1, ws, ws, w,) the set ad-
joint to it. The two sets are related by the equations

* Presented to the Society, October 30, 1937.

t J. Kaucky, Sur les équations aux différences finies qui sont identiques d
leurs adjointes, Publications of the Faculty of Sciences, University of Masaryk,
No. 22 (1922). For a discussion of adjoint differential expressions of infinite
order, see H. T. Davis, The Theory of Linear Operators, 1936, pp. 474-475.
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Ay 1
wi(®)p(x) = -2(1{—1)«’
(3) yi(x —2) - yu(x — 2)
A(x) = . .« . . . . . . ... ,

yi(x 4+ 1) - oy + 1)

in which A4 (x) denotes the Casorati determinant and A4 ;;(x) the
cofactors of its elements. Since w; satisfies the equation L(u) =0,
one can write

(4) w; = Cilyl(x) + -+ ci4y4(x)) (7' = 15 2, 3; 4)'
The ¢;; have properties stated in the following theorem.*

THEOREM 1. The matrix C*t of the substitution (4) is skew-sym-
meiric and C~ symmetric. Further, there is a set of relations involy-
ing c;it and the second order minors of A+(x) from which the c;it
may be calculated explicitly:

4 : \— : A\~ 1
Eci#(y 3’7>=0’ Zw‘(y y,>=_

>im=1 -2 -1 -2 0 p(x)

Yoo Y\ _ A }
2 af <—2 1> p@)p(x + 1)

4 . YA . A 1
> c,-,-*‘( 4 y,> =0, > ci,'+<y y;) = —

>im1 -1 0 p(x+ 1) ’

We resolve (4) to get

) o= lwss = Do) & -+ e+ D] 1o

We use (1, 2, 3) to furnish the following relations

* We introduce a (+) and (—) convention to distinguish between quanti-
ties associated with (1) and (2) respectively. Also we set

u(x + ol +5) + v(x + Nulx +5) = (u ,,)i.

r s
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Ay
wi(s — Dple — 1) = — (i’;) )
wi(x — 2)p(x) +ANwi(x — 1) = A;ZE:;) )
© A
£ wEOp() = S
Azii(x)
T DwiE@) + e + DwiE(s + 1] = e

Combining (5) and (6) we find

. . wE  wE\F wE  wiE\F
C""_p(x+)<1 -—1>+P(x)<0 —2)

wE  wE\F
(Y,
0o -1

Obviously we have ¢;;t = —¢;it and ¢;; =¢;;. Combine (3) and
(4) to eliminate the w’s. These equations together with L*(y#)
=( yield the set of equations involving the minors. The sixth
order determinant composed of the two-rowed minors is non-
vanishing (= [4+(x)]?).*

In the development of adjoint difference systems the formula

(8) 2 flw 4+ 1) = f(x) + 2 f(x)

is used to provide a Lagrange relation

™

b—1

9 X [vL(w) — uL(®)] = O(u, v) = U,Us + - - - + UsVy,

T=q

in which the U are eight linearly independent forms arbitrarily
chosen:

U;=auu(a — 2) + - - - + aiu(a + 1)
+ bau(d — 2) + - - + biu(d + 1).
If the two systems
L(u) =0, Ui=Us=U;=Us=0,
L(v) =0, Vi=Ve=V;=V,=0,

(10)

(11)

* Turnbull, The Theory of Determinants, Matrices, and Invariants, 1929,
p. 87.



854 V. V. LATSHAW [December,

are equivalent, we shall call them self-adjoint difference sys-
tems.

THEOREM 2. Given the fourth order difference systems composed
of the equations

Li(“) =0, U; =0, (7' =123, 4))

defined in (1), (2), (10), let u(x) and v(x) be any pair of functions
satisfying U;=0; then Il(u, v) =0 is a necessary and sufficient
condition that the given system be self-adjoins.

That the above condition is necessary needs no proof. Let
(w1, 42, us, #4) be four linearly independent functions satisfying
U;=0 and % any linear combination of them. Through substitu-
tion the identity II(«, v) =0 gives

(12) Us(u)V(u) + - - - + Us(u)Vi(w) =0, (i=1,2,34).

Since the set (Ui, U,, - - -, Us) is linearly independent, it fol-
lows that the four systems of constants comprising the coeffi-
cients of the V’s are linearly independent and we have
Vi(u) = Va(u) = Vi(u) = Vy(u) =0. A similar argument shows
that any function satisfying the given boundary conditions
will also satisfy the adjoint boundary conditions.

We record some examples which fulfill the condition for self-
adjointness.

Ug = aifule — 2) + au(a — 1) + p(a)u(a)
+ bi3u(b) + brau(db + 1) = 0,
Ui = + au(a — 2) + aiu(a — 1) + €u(a)
(13) + pla + Du(a + 1) + beu(b + 1) = 0,
Ust = & bigu(a — 2) = p(B)u(d — 2) £ (b — 1)
+ s u(b) + bsau(d + 1) = 0,
Ug = & buu(a — 2) £ byu(a — 1) £ p(b + Du(d — 1)
+ bau(d) + bifu(® + 1) =0,
with the agreement that aii = =bs =bsyi =0. For self-ad-
joint Sturmian boundary conditions we make the added restric-

tiOIlS, biz =01 =024=0.
We now introduce a function G%(x, {) defined for (¢ —1<x<b),
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(a=t<b), satisfying the given boundary conditions and for
which L£[G£ (3, 7) ] = 6.;.

THEOREM 3. Let Mt N\ot, - - - be sets of characteristic values for
the systems L*(u) =0, U;=0 defined in (13). There exists a N+
in the interval N SNiF<Nj;.) provided

b—1

G=(b,b — 1) —G*(b,b — 1) — > [G~(x — 1, %) + GH(x —1, x) ] %0,
- O =N = Am).

If (b—a) s an odd integer, then every value of N\~ is a characteristic
value.

Let D(\) =0 be the characteristic equations for (13). By
writing D*(\) in determinant form one finds

dD* b—1
(14) = 2D+ [Gi(b, b—1)+ > Gt(w — 1, x)].

This relation enables us to write

i(—l> - [G—(b b—1) —GHb, b — 1
a\p+/ Dt ’ ) ’ )

(15)

b—1
— 2 {G(x — 1, %) + G+(x — 1, x)}]
Between the two real consecutive zeros Aj- and A, of D—(\)
either the bracketed expression or Dt(\) must vanish. By as-
sumption the bracketed expression does not vanish.

The proof of the final statement in the theorem consists
merely in noticing that D~(\) for this case is a skew-symmetric
determinant of odd order.
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