$$\{ [f(x + (D-1)\theta) - f(x - \theta D)]F(y) \}_{y=0} = \theta \frac{df(x)}{dx}.$$

Blissard's remark, "An equation which has a representative quantity is not susceptible to any algebraic operation by which the indices would be affected," becomes

$$(Df)^2 \neq D^2f.$$

University of Washington

ON FOURTH ORDER SELF-ADJOINT DIFFERENCE SYSTEMS*

BY V. V. LATSHAW

A linear difference expression for which the differential transform is self-adjoint (anti-self-adjoint) we shall call self-adjoint (anti-self-adjoint).† We choose two fourth order difference equations

(1)
$$L^{+}(u) = p(x)[u(x+2) + u(x-2)] + \lambda[u(x+1) + u(x-1)] + R(x)u(x) = 0,$$

(2)
$$L^{-}(u) \equiv p(x) [u(x+2) - u(x-2)] + \lambda [u(x+1) - u(x-1)] = 0,$$

where $L^+(u)$ is self-adjoint and $L^-(u)$ anti-self-adjoint for the range $(x=a, a+1, \cdots, b-1; b-a \ge 4)$. R(x) and p(x) are both real, p(x) being a non-vanishing periodic function of period two; λ is a parameter.

Let the functions (y_1, y_2, y_3, y_4) constitute a fundamental set of solutions for either (1) or (2), and (w_1, w_2, w_3, w_4) the set adjoint to it. The two sets are related by the equations

^{*} Presented to the Society, October 30, 1937.

[†] J. Kaucky, Sur les équations aux différences finies qui sont identiques à leurs adjointes, Publications of the Faculty of Sciences, University of Masaryk, No. 22 (1922). For a discussion of adjoint differential expressions of infinite order, see H. T. Davis, The Theory of Linear Operators, 1936, pp. 474-475.

in which A(x) denotes the Casorati determinant and $A_{ij}(x)$ the cofactors of its elements. Since w_i satisfies the equation L(u) = 0, one can write

(4)
$$w_i = c_{i1}y_1(x) + \cdots + c_{i4}y_4(x), \qquad (i = 1, 2, 3, 4).$$

The c_{ij} have properties stated in the following theorem.*

THEOREM 1. The matrix C^+ of the substitution (4) is skew-symmetric and C^- symmetric. Further, there is a set of relations involving c_{ij}^+ and the second order minors of $A^+(x)$ from which the c_{ij}^+ may be calculated explicitly:

$$\sum_{i>i=1}^{4} c_{ij}^{+} \begin{pmatrix} y_{i} & y_{j} \\ -2 & -1 \end{pmatrix}^{-} = 0, \qquad \sum_{i=1}^{4} c_{ij}^{+} \begin{pmatrix} y_{i} & y_{j} \\ -2 & 0 \end{pmatrix}^{-} = -\frac{1}{p(x)},$$

$$\sum_{i>i=1}^{4} c_{ij}^{+} \begin{pmatrix} y_{i} & y_{j} \\ -2 & 1 \end{pmatrix}^{-} = \frac{\lambda}{p(x)p(x+1)},$$

$$\sum_{j>i=1}^{4} c_{ij}^{+} \begin{pmatrix} y_i & y_j \\ -1 & 0 \end{pmatrix}^{-} = 0, \quad \sum_{i=1}^{4} c_{ij}^{+} \begin{pmatrix} y_i & y_j \\ -1 & 1 \end{pmatrix}^{-} = -\frac{1}{p(x+1)},$$

$$\sum_{i=1}^{4} c_{ij}^{+} \begin{pmatrix} y_i & y_j \\ 0 & 1 \end{pmatrix}^{-} = 0.$$

We resolve (4) to get

(5)
$$c_{ij}^{\dagger} = \left[w_i(x-2)A_{1j}(x) + \cdots + w_i(x+1)A_{4j}(x) \right] \frac{1}{A(x)}$$

We use (1, 2, 3) to furnish the following relations

$$u(x+r)v(x+s) \pm v(x+r)u(x+s) = \begin{pmatrix} u & v \\ r & s \end{pmatrix}^{\pm}.$$

^{*} We introduce a (+) and (-) convention to distinguish between quantities associated with (1) and (2) respectively. Also we set

$$w_{j}(x-1)p(x-1) = \frac{A_{4j}(x)}{A(x)},$$

$$w_{j}(x-2)p(x) + \lambda w_{j}(x-1) = \frac{A_{3j}(x)}{A(x)},$$

$$\pm w_{j}^{\pm}(x)p(x) = \frac{A_{1j}^{\pm}(x)}{A^{\pm}(x)},$$

$$\mp \left[\lambda w_{j}^{\pm}(x) + p(x+1)w_{j}^{\pm}(x+1)\right] = \frac{A_{2j}^{\pm}(x)}{A^{\pm}(x)}.$$

Combining (5) and (6) we find

(7)
$$c_{ij}^{\pm} = p(x+1) \begin{pmatrix} w_i^{\pm} & w_j^{\pm} \\ 1 & -1 \end{pmatrix}^{\mp} + p(x) \begin{pmatrix} w_i^{\pm} & w_j^{\pm} \\ 0 & -2 \end{pmatrix}^{\mp} + \lambda \begin{pmatrix} w_i^{\pm} & w_j^{\pm} \\ 0 & -1 \end{pmatrix}^{\mp}.$$

Obviously we have $c_{ij}^+ = -c_{ji}^+$ and $c_{ij}^- = c_{ji}^-$. Combine (3) and (4) to eliminate the w's. These equations together with $L^+(y_i^+)$ = 0 yield the set of equations involving the minors. The sixth order determinant composed of the two-rowed minors is non-vanishing $(= [A^+(x)]^3)$.*

In the development of adjoint difference systems the formula

(8)
$$\sum f(x+1) = f(x) + \sum f(x)$$

is used to provide a Lagrange relation

(9)
$$\sum_{x=a}^{b-1} [vL(u) - uL(v)] = \Pi(u, v) = U_1U_8 + \cdots + U_8V_1,$$

in which the U_i are eight linearly independent forms arbitrarily chosen:

(10)
$$U_i = a_{i1}u(a-2) + \cdots + a_{i4}u(a+1) + b_{i1}u(b-2) + \cdots + b_{i4}u(b+1).$$

If the two systems

(11)
$$L(u) = 0, U_1 = U_2 = U_3 = U_4 = 0, L(v) = 0, V_1 = V_2 = V_3 = V_4 = 0,$$

^{*} Turnbull, The Theory of Determinants, Matrices, and Invariants, 1929, p. 87.

are equivalent, we shall call them self-adjoint difference systems.

THEOREM 2. Given the fourth order difference systems composed of the equations

$$L^{\pm}(u) = 0, \qquad U_i = 0, \qquad (i = 1, 2, 3, 4),$$

defined in (1), (2), (10), let u(x) and v(x) be any pair of functions satisfying $U_i=0$; then $\Pi(u, v)\equiv 0$ is a necessary and sufficient condition that the given system be self-adjoint.

That the above condition is necessary needs no proof. Let (u_1, u_2, u_3, u_4) be four linearly independent functions satisfying $U_i = 0$ and u any linear combination of them. Through substitution the identity $\Pi(u, v) \equiv 0$ gives

$$(12) \quad U_5(u_i)V_4(u) + \cdots + U_8(u_i)V_1(u) = 0, \quad (i = 1, 2, 3, 4).$$

Since the set (U_1, U_2, \dots, U_8) is linearly independent, it follows that the four systems of constants comprising the coefficients of the V's are linearly independent and we have $V_1(u) = V_2(u) = V_3(u) = V_4(u) = 0$. A similar argument shows that any function satisfying the given boundary conditions will also satisfy the adjoint boundary conditions.

We record some examples which fulfill the condition for self-adjointness.

$$U_{1}^{\pm} = a_{11}^{\pm} u(a-2) + a_{12}u(a-1) + p(a)u(a) + b_{13}u(b) + b_{14}u(b+1) = 0,$$

$$U_{2}^{\pm} = \pm a_{12}u(a-2) + a_{22}^{\pm}u(a-1) + \lambda u(a) + p(a+1)u(a+1) + b_{24}u(b+1) = 0,$$

$$U_{3}^{\pm} = \pm b_{13}u(a-2) \pm p(b)u(b-2) \pm \lambda u(b-1) + b_{33}^{\pm}u(b) + b_{34}u(b+1) = 0,$$

$$U_{4}^{\pm} = \pm b_{14}u(a-2) \pm b_{24}u(a-1) \pm p(b+1)u(b-1) \pm b_{34}u(b) + b_{44}^{\pm}u(b+1) = 0,$$

with the agreement that $a_{11} = a_{22} = b_{33} = b_{44} = 0$. For self-adjoint Sturmian boundary conditions we make the added restrictions, $b_{13} = b_{14} = b_{24} = 0$.

We now introduce a function $G^{\pm}(x, t)$ defined for (a-1 < x < b),

 $(a \le t < b)$, satisfying the given boundary conditions and for which $L^{\pm}[G^{\pm}(i,j)] = \delta_{ij}$.

THEOREM 3. Let $\lambda_1^{\pm}, \lambda_2^{\pm}, \cdots$ be sets of characteristic values for the systems $L^{\pm}(u) = 0$, $U_i = 0$ defined in (13). There exists a λ_k^{\pm} in the interval $(\lambda_i^{-} \leq \lambda_k^{\pm} < \lambda_{i+1}^{-})$ provided

$$G^{-}(b, b-1) - G^{+}(b, b-1) - \sum_{x=a}^{b-1} [G^{-}(x-1, x) + G^{+}(x-1, x)] \neq 0,$$

$$(\lambda_{i}^{-} \leq \lambda \leq \lambda_{i+1}^{-}).$$

If (b-a) is an odd integer, then every value of λ^- is a characteristic value.

Let $D^{\pm}(\lambda) = 0$ be the characteristic equations for (13). By writing $D^{\pm}(\lambda)$ in determinant form one finds

(14)
$$\frac{dD^{\pm}}{d\lambda} = 2D^{\pm} \left[G^{\pm}(b, b - 1) \pm \sum_{x=a}^{b-1} G^{\pm}(x - 1, x) \right].$$

This relation enables us to write

(15)
$$\frac{d}{d\lambda} \left(\frac{D^{-}}{D^{+}} \right) = \frac{2D^{-}}{D^{+}} \left[G^{-}(b, b - 1) - G^{+}(b, b - 1) - \sum_{x=a}^{b-1} \left\{ G^{-}(x - 1, x) + G^{+}(x - 1, x) \right\} \right].$$

Between the two real consecutive zeros λ_i and λ_{i+1}^- of $D^-(\lambda)$ either the bracketed expression or $D^+(\lambda)$ must vanish. By assumption the bracketed expression does not vanish.

The proof of the final statement in the theorem consists merely in noticing that $D^-(\lambda)$ for this case is a skew-symmetric determinant of odd order.

LEHIGH UNIVERSITY