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THE SUCCESSIVE ITERATES OF THE STIELTJES
KERNEL EXPRESSED IN TERMS OF THE
ELEMENTARY FUNCTIONS*

BY D. V. WIDDER

1. Introduction. The Stieltjes kernel is the function

Hyt, ) = —— -
’ E+
We define its successive iterates by the recurrence relation
® Hn_l(t, T])dt
H, ’7=f e =234 ).
(é) ) 5 £+ / 4 ( )V )

That these integrals all exist will appear from later considera-
tions. Simple computation shows that

e dt log £ — logn
Hy(¢, =f = ’ > 0,97 >0).
R R S T €>0m>0

It is natural to inquire if it is also possible to express the higher
iterates in terms of the elementary functions. It is the purpose
of the present note to prove that this is the case. We show, in
fact, that H,(&, ) is a linear combination of the functions

(log & — log n)**+! (log & — log n)**
2k + DIt —n) (2k) (& + )
the constants of combination being the coefficients of the power

series expansion of (mw/sin ws)*. The precise result to be proved
is contained in Theorem 2 of this paper, stated as follows:

(k=0:1)2;"');

THEOREM 2. If 0<é< 0, 0<y< =, then
n Aon,2k [logE — log n]2*1

Hn = s n=1,2,--),

R TR ( )
LAY PV log £ — log n|%%

oty my= 35 i llogt = logal?

k=0 (Zk)! £+
(ﬂ=0,1,2,"'),

* Presented to the Society, September 10, 1937.
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where the constants A, . are defined by the expansion

s \"
(1) ( ) = An,n + An,n—ls + An,n—2s2 + Tt .

sin s

2. Iterates of the Stieltjes Kernel. We introduce the successive
convolutions of the function sech(#/2) as follows:

hi(x) = sech (x/2),

@ hao(x) = (21r)‘1/2fwh1(t)h,,_1(x —Ndt, (n=23,---).

Since k;(x) is an even function of class L, it follows that £,(x)
has the same property. The existence of the successive integrals
is obvious.

We are able to express the function H,(&, ) in terms of %, (x)
as follows:

3) H,(e*, e¥) = (2m) v~ DI22=neg=Ce+0) 2], (4 — y).

It is a simple matter of verification to check this result for n=1.
To prove it by induction, first assume it true for » —1. Then

© ean_ u’ Yy
aer e = [ ke )

— €Tt e
Qr)=niz ,~® g i2h, o (y — y)
_ f du
2n—1 o e* + e*
(27r)(n—2)/2 ®© b X —u P d
= Wf_w sec 5 n1(u — y)du

C

= (2m) (D2 ne(etw) 2 f () s (x — y — B)dt

= (2r) (D122 ng= GV 2], (5 — ).
This completes the induction.

3. Several Lemmas. In order to establish our principal result
we first state several lemmas.

LEMMA 1. For all real x

0

(21)——1/2f e”‘kl(t)dt _ (21r)—1/2f eixt sech(t/Z)dt

—0 —

= (27)'/2 sech 7x.
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This is a familiar result.*

LEMMA 2. For all real x

(2"")—”2f e*th,()dt = (2w)~ /22w sech wx)".

—o0

This follows from the known facts concerning the Fourier
transform of the convolution of several functions.

LeEMMA 3. If0<x<1,m=1,2,3, .-, then

°° tm i m!
[t gay
e 1—e¢t e (® + k)™t
The integral on the left converges absolutely if 0 <x <1 since
tm
—— = 0(e*), (t— =),
1 — ¢t

= 0(et~, (t— — ),
for every positive e. Then

)

®© gmwtm * i m!
[T e [ - 5
0 0

= = St pm
0 e—xtgm @ extgm
[ g e [T
o 1 — et o 1 —et
i ® “21 m!
= (__ 1)”"”1 ela=k)tymt = .
=1v 0 b (% + EY™F1

The term by term integration is justified by dominated conver-
gence.

LEmMMA 4. If — 0 <t< o and m=1, 2,3, -, then

tm 1 1/24+ic0 g m!
—_— —_— est -
1 — ¢t 2wtV 12—in e (s + k)™t1

This follows from Lemma 3 by a general inversion formula
for the Laplace transform. }

* See, for example, R. E. A. C. Paley and N. Wiener, Fcurier Transforms in
the Complex Domain, 1934, p. 41.

t See, for example, S. Bochner, Vorlesungen iiber Fouriersche Integrale,
Leipzig, 1932, p. 148.
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LeMMA S, If0<x<1,m=0,1,2, .-, then

© gmaym “ (= 1)*m! Noo(— 1)km!
f dt=2(—~)——=lim2—()—~

—~ 1+ b (# + B)™ Now gy (% + k)™

If m is positive the proof is similar to that of Lemma 3 and is
omitted. If m =0,

o et ad N
f dt =f e~otlim Y, (— 1)ke*tds

—® 1 + et N—ow p_q

0
© N
f et lim D (— 1)*e*tds
0

Noow p_1
1 ® 1 — (= 1)Ne Nt
=— — f [e‘“ - e“] lim e“[ ( ) ]dt
X 0 N—ow 14 ¢t
N (= 1)k

= lim ),

Now e N X + k

Since
|e-t(e—xt — et (1 — (= Ve V(1 + e-t)—1|
S 2ete @t et)(1 + )7l (02t < ),

and since the right-hand side of this inequality is integrable in
the interval (0, «), the interchange of limit and integration
signs is justified.

LEMMA 6. If — o <t<w,m=0,1,2,---, then
m 1 1/2+ie0 N — 1) op!
= et lim Z _E_)— s
T4+et  2midye i Now =y (s + k)mt+!

The proof is the same as that of Lemma 5.

4. Evaluation of the Successive Iterates. We shall first evaluate
the functions %,(x) in terms of the elementary functions. The
result is contained in the following theorem:

THEOREM 1. For all real x the functions h,(x) defined by (2)
have the expression

2 (2n—1)/2 x
4 hon(%) = { — csch — Asn, P — )
@ () <1r> 2,{"1 ™ 0p — 1)1

(’}’l=1,2,3,"‘),

g2k1
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22k

5) & 2Y cech =3 4
(5)  hantr(x) = - sec —2—105:; 2n+l,2k+lm’

(”‘_‘0’1)2)"')'

By use of Lemma 2 and by the known reciprocal formulas for
the Fourier transform* we have

ha(x) = (21r)‘1/2f e~=t(2r)n/2(sech wt)dt, (— » < x < =),

By the change of variable s = (1/2) —4¢ this becomes

1/2+ic0
6)  hu(x) = — i(ZT)(""l)/ze‘xlzf e**(csc ws)™ds,

1/2—7c0
(— o <x< ®),
Now if the constants 4,,,—; are defined by (1), it is clear that

Asgnoi-1 =0, (k=12 ,m;n=1,2,--+),
A2n+1,2k=0, (k=1,2,---,n;n=0,1,2,--~).
The Mittag-Leffler theorem gives us
i An,n An,n—l
(rescms)r = D (— 1)""[ +
P (s+ & (s+ k!
(7)
by é__}
s+ k ’
with the understanding that
d An,l y An,l
— = lim — 1) .
k-__z_w S+k N—mk;]v( ) S+k

We now obtain (4) by substitution of (7) in (6) and by applying
Lemma 4. In a similar way (5) is obtained by use of Lemma 6.
Theorem 2 now follows from Theorem 1 by virtue of (3).

HARVARD UNIVERSITY

* One may apply, for example, S. Bochner, op. cit., Theorem 12, p. 42.



