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POLYNOMIAL APPROXIMATION ON A CURVE 
OF T H E FOURTH DEGREE* 

BY DUNHAM JACKSON 

1. Introduction. In the study of orthogonal polynomials and 
polynomial approximation, or of the corresponding theory for 
trigonometric sums, a powerful auxiliary is Bernstein's theorem 
on the derivative of a trigonometric sum or of a polynomial. 
When it is desired to investigate similar problems relating to 
approximation by means of polynomials on a curve in the plane 
of two real variables f x and y, the question arises whether some­
thing in the nature of Bernstein's theorem is available in this 
case also. For some of the simplest curves, such as a line segment 
or a circle, the question is merely one of interpretation, the poly­
nomials in x and y reducing at once to polynomials or trigono­
metric sums in terms of the arc length (or a constant multiple 
of it) as parameter. For any curve segment of the form x =<M0> 
3; =^( / ) , where cf>(t) and \[/(t) are polynomials in /, there is an im­
mediate answer as far as differentiation with respect to / is con­
cerned; and if \(j>r{t) | + \ypf(t) | is everywhere positive (and so 
has a positive lower bound) on the closed range of values of t 
considered, a derivative with respect to arc length does not ex­
ceed a constant multiple of the derivative with respect to t. This 
paper is concerned with an illustrative case in which the prob­
lem appears to be not entirely trivial, and yet susceptible of 
simple and elementary treatment. An appropriate form of 
Bernstein's theorem is obtained, and its application to a prob­
lem of polynomial approximation is indicated. 

A concluding paragraph relates to the convergence in the 
mean of developments in series of orthogonal polynomials on 
an arbitrary curve. 

2. Bernstein1 s Theorem. Let C be the curve 

X4 + y* = 1. 

* Presented to the Society, December 31,1936. 
t See D. Jackson, Orthogonal polynomials on a plane curve, presently to 

appear in the Duke Mathematical Journal. 
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It can be represented parametrically by the equations 

x = | cos d\1/2 sgn cos 0, y = | sin #|1/2 sgn sin 0. 

Let s be the arc length, measured counter-clockwise from the 
point (1,0). Let P(x, y) be a polynomial of the ^th degree in the 
variables x and y together, and let 

I P(X, y)\SL 

at all points of the curve. It is to be shown that 

isp^ * ^ AnL 

everywhere on the curve, A being an absolute constant. 
Let 

<*i(x,y)=— [P(x, y)+P(-x, y)+P(x, -y)+P(-x, -y)], 
4 
1 r 

fii(x, y)-— [P(x, y)-P(-x, y)+P(x, - y ) - P ( - x , - y ) ] , 
4 
1 r 

yi(x,y)=— [P(x, y)+P(-x, y)-P(x, - y ) - P ( - * , - y ) , 
4 
1 r 

ti(x, y)=— [P(x, y)-P(-x, y)-P(x, - y ) + P ( - x , - y ) ] . 

Each of these polynomials has L as an upper bound for its ab­
solute value on C. They are respectively of the form 

ai(x, y) = a2(x
2, y2), 0i(x, y) = xp2(x

2, y2), 

7l(x, y) = yy2(x
2, y2), ôi(a, y) = xyô2(x

2, y2), 

where a2, fi2, y2, ô2 are polynomials of degree not exceeding n/2 
and so (for n^ 1) not exceeding w — 1, in the two arguments to­
gether. 

Since a polynomial in #2 and y2 is a polynomial in | cos 0 | and 
| sin 01 and consequently, for O^0^7r /2 , a trigonometric sum 
in 0, the expressions ai, • • • , ôi can be written as 

«i(*, y) = «(*), 0i(*, y) = (cos 0)1'2iö(0), 

Yi(#, y) = (sin 0 ) 1 / 2 T ( 0 ) , $I(*, y) = (sin 0 cos 0)1'2£(0) 
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for 0 ^ ö ^ 7 r / 2 , where a(0), • • • , 5(0) are trigonometric sums of 
order not greater (and in general considerably less) than n — \. 
From extensions of Bernstein's theorem established elsewhere* 
it follows that the absolute value of the derivative of each of 
the last four right-hand members with respect to 0 has for 
O<0<7r/2 an upper bound of the form 

AiuL 

(sin0cos0)1/2 

where Ai is an absolute constant; it is to be noted that as re­
gards the orders of magnitude concerned (sin 0)1/2, (cos 0)1/2 are 
equivalent to 01/2, ( T T / 2 - 0 ) 1 / 2 . 

On passage to the second, third, or fourth quadrant the trigo­
nometric sums ce, • • • , 8 are modified by substitution of 
— cos 0 for cos 0, or of --sin 0 for sin 0, or both, in the poly­
nomial expressions, but the form of the conclusion is unchanged 
except for the replacement of sin 0 and cos 0 by their absolute 
values. Since P(x, y) = cei+j3i+Yi+5i, there is an absolute con­
stant A o such that 

AQUL 

sin 6 cos 0|1/2 

in all four quadrants. 
ForO<0^7r /4 , 

ds dy cos0 2~3/2 2~7^ 
— ^ — = ^ ^ , 
dB dB 2(sin0)1 '2 (sin 0)1'2 (sin 0 cos 0)1/2 

and the relation ds/dd ^ | dx/dd | leads to the same result for 
7r/4^0<7r/2. SO 

dB 
— ^ 4(sin0cos0)1 '2 

ds 
throughout the interval (0, TT/2). The same conclusion, with 
| sin 0 cos 0|1 / 2 in the right-hand member, holds in the other 
quadrants also. It follows that 

* See D. Jackson, Bernstein's theorem and trigonometric approximation, 
Transactions of this Society, vol. 40 (1936), pp. 225-251; Theorems 1, 3, 4. 

de 
P(x, y) 



1937-1 POLYNOMIAL APPROXIMATION 391 

d 
— P{*> y) 
as 

S 4:A0nL 

everywhere on the curve, in agreement with the assertion that 
was to be proved.* 

3. Convergence. This proposition can be used in connection 
with the theory of closest polynomial approximation on the 
curve C just as the standard form of Bernstein's theorem is 
used in the theory of approximation by trigonometric sums, f 

For detailed interpretation of the results information is 
needed as to the possibility of representing a given function of 
5 on C by means of polynomials in x and y with a specified de­
gree of accuracy. The discussion here will be restricted to a 
simple case illustrating the accessibility of the question to treat­
ment. 

Let s be measured counter-clockwise from the point (1, 0), as 
already suggested, let a be the total length of the curve, and 
let f(s) be a continuous function of period a satisfying a Lipschitz 
condition with respect to s. Let a function F(x, y) be defined 
throughout the (#, y) -plane by the specifications that it shall 
vanish at the origin, shall be linear on each ray issuing from the 
origin, and on each of these rays shall coincide in value with ƒ (s) 
at the point where the ray meets the curve. Then F(x, y) satis­
fies a Lipschitz condition as a function of the two variables. 

(This observation, evident by geometric intuition applied to 
the surface z = F(x, y), may be analyzed as follows. If O is the 
origin, and if P and Q are two points lying on a curve x*-\-yA 

= constant, subject to the restriction that the magnitude of the 
angle POQ does not exceed 7r/2, say, the ratio of the arc PQ to 
the chord PQ does not exceed a constant. Also, the angle PQO 
has a positive lower bound and an upper bound less than w. Let 
P and R be any two points of the plane for which the magnitude 
of the angle POR is not greater than w/2. Let Q be the point in 
which the ray OR meets that curve x*+yA = constant which 

* Although the proof does not apply in the first instance at the quadrantal 
points where sin 0 cos 0 = 0, the validity of the conclusion at these points fol­
lows by continuity. 

t See, for example, D. Jackson, Certain problems of closest approximation, 
this Bulletin, vol. 39 (1933), pp. 889-906; Lemmas 1 and 5, Theorems 1, 2, 9, 
and 10. 
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passes through P . In the (rectilinear) triangle PQR, we have 
PQ:PR = s'm Ris'm Q, QR:PR = sm P:s in Q; as sin <2 = sin PQO 
has a positive lower bound, each of the distances PQ, QR is less 
than a constant multiple of PR. The ratio of | P(P) - F(Q) | to 
the length of the arc PQ is the same as for the corresponding 
points on the given curve x*+y*=l, and so does not exceed the 
constant of the Lipschitz condition of the hypothesis. Hence 
| F(P) — F(Q) | is not greater than a constant multiple of the 
chord PQ, and not greater than a constant multiple of PR. 
On the ray OR, where F is a linear function of distance with 
coefficient less than or equal to the corresponding value of 
| / ( s ) | , \F(Q) — F(R)\ does not exceed a constant multiple of 
QR, because of the boundedness of f(s), and so is not greater 
than a constant multiple of PR. Therefore | F(P) - F(R) | does 
not exceed a constant multiple of PR. If the angle POR is 
greater than 7r/2, \ F(P) — F(0)\ does not exceed a constant 
multiple of OP, | F(0) — F(R) | does not exceed a constant mul­
tiple of OR, each of the distances OP, OR is less than PR, and 
| P(P) — F(R) | again does not exceed a constant multiple of 
the distance PR.) 

Consequently* there exist polynomials Pn(x, y), of the nth 
degree in x and y, approximating F(x, y) throughout the square 
— 1 <;#^g 1, — l^y^l, say, with maximum error not exceeding 
a constant multiple of 1/n. In particular ƒ(s), to which F(x, y) 
reduces on C, is represented by polynomials of the ?zth degree 
in x and y with the same upper bound for the magnitude of the 
error. 

Taken in conjunction with the theorem of the first part of 
the paper, by the use of a type of argument referred to above as 
employed elsewhere in the theory of approximation by trigono­
metric sums, this means that under the hypothesis that has been 
imposed on ƒ (s) if polynomials Pw(x, y) of degree n are determined 
for successive values of n so as to minimize the integral 

f \f(s)-Pn(x,y)\mds, 
Jc 

* See, for example, D. Jackson, Über die Genauigkeit der Annaherung 
stetiger Funktionen . . . , Dissertation, Gottingen, 1911, pp. 16-17, 88; E. L. 
Mickelson, On the approximate representation of a function of two variables, 
Transactions of this Society, vol. 33 (1931), pp. 759-781, §5. 
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with m > 1, /fee polynomials Pn(x, y) will converge uniformly on C 
toward f {s). In particular, for m = 2, the expansion off{s) in series 
of polynomials orthogonal on C, with parameter s and weight func­
tion 1, will converge uniformly toward f(s). The statements can 
be generalized immediately by introduction of a suitably re­
stricted weight function in the integral to be minimized. 

4. Convergence in the Mean. As regards the convergence of de­
velopments in series of orthogonal polynomials, the proof just 
presented suggests an approach to the problem of convergence 
in the mean, not merely for the special curve which has been 
under consideration, but for an arbitrary curve, with an arbi­
trary parametric representation. Let a curve C (algebraic or 
non-algebraic) be given by a pair of equations x=<f>(t),y=\l/(t), 
where 0 and xf/ are continuous f or 0 ̂  t ̂  a (or continuous every­
where and of period a), and no two distinct values of t (or no 
two distinct values in a period) correspond to a single point 
(x, y), and let a corresponding system of orthogonal polynomials 
be constructed as described in the paper to which reference is 
made in the footnote to the opening paragraph above, the 
weight function, for simplicity of statement, being taken as 1. 
If ƒ(/) is any function continuous over the range of /, a func­
tion F(x, y) can be formed* which is continuous in the two vari­
ables throughout a rectangle containing C, and reduces on C 
to ƒ(/). This F(x, y) can be uniformly approximated throughout 
the rectangle by polynomials in x and y with any degree of ac­
curacy, and on the curve C in particular f{t) is uniformly ap­
proximated, and so approximated in the mean, by the same 
polynomials. It follows that any function g(t) which is of class 
L2 for O^t^a can be approximated in the mean with index 2 
by polynomials in x and y, and hence by the least-square prop­
erty that the development of g(t) in series of orthogonal polyno­
mials converges in the mean with this index. 

T H E UNIVERSITY OF MINNESOTA 

* See Hassler Whitney, Analytic extensions of differ entiable functions defined 
in closed sets, Transactions of this Society, vol. 36 (1934), pp. 63-89, p. 63; 
also, for example, D. Jackson, An elementary boundary value problem, this Bul­
letin, vol. 22 (1915-16), pp. 393-397. 


