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Fyy(ws) = f(ws) < Fi,(ws),
Fso(x9) = f(25) < Fr (),
so that, by Theorem 1 and its corollary,
Fgo(w) < Fy,(x), (ws < x < b);
in particular,
(41) Fgo(x7) < Fr,().
Now (41) contradicts (39) and (40).
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1. Introduction. Given J = [J*f(x,y, y")dx, it is well known that
a minimizing curve satisfies the necessary conditions of Euler,
Weierstrass, and Legendre, which we shall designate as I, II,
and III,7 respectively. If further, f,,(x, ¥, ¥") 0 on the mini-
mizing curve, the Jacobi condition IV is necessary, while the
stronger set of conditions I, II{, III’, and IV'] are sufficient
for a strong relative minimum.

The purpose of this study is to obtain a set of sufficient con-
ditions for a curve without corners along which f,/,» may have
zeros. Since the classical theory gives only the necessary condi-
tions I, II, and III, we wish to obtain a Jacobi condition; and
with this in view, introduce the integral

L= | &%y 5)dx, ¢(z,9,9) = f(x,,9) + B[y — ()],

" (01 £ o < w4, £S0),
by means of which we find a necessary condition that we shall
call IV}. Suitably strengthened, this becomes IVz, and the

set of conditions I, II, III;, and IVy, are found sufficient for
an improper strong relative minimum.

* Presented to the Society, November 27, 1936.
t G. A. Bliss, Calculus of Variations, 1925, pp. 130-132.
t Bliss, loc. cit., pp. 134-135.
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It appears likely that analogous results can be obtained for
other problems in the Calculus of Variations and I hope to dis-
cuss some of these at a later time.

2. A Jacobi Necessary Condition. If E: y=e(x) furnishes at
least an improper strong relative minimum for J, it furnishes
a proper strong relative minimum for L. Furthermore, if E mini-
mizes J it satisfies I1I for J. This implies that it satisfies I11’
for L, since ¢y, =f,+2k?%; and the classical treatment then
shows that it must satisfy IV for L.

If E satisfies IV (or IV’) for every L, we shall say that it
satisfies the condition IV (or IVy, respectively) for J. Clearly
IV, is necessary. We now show that the same is true of IVy,.

We write the parameter in L in the form k2= (a?+a)/2, a #0,
a> —a?, and consider the Jacobi differential equations*

(1 qu'’ + ru' + su =0,
2) g+ a2+ a)u” + ' + su =0,

for J and L, where ¢ =f,, [, e(x), ¢’(x) ] =0 in the closed inter-
val [xy, %3] from I1I, and 7 and s are other known functions of x.
Since ¢ may vanish in [y, %;], the usual existence theorems can
not be applied to (1). They do apply to (2), however, the general
solution of which for =0 is u = c;u1(x) +cous(x), where the u’s
constitute a fundamental system and are of class C’’{ in [x1, %2 ].
A(x, x1) = L us(x1)u1(x) F u1(x1)u2(x) is a particular solution van-
ishing at x=x;. By hypothesis, E: y=e(x) is a minimizing
curve satisfying IV, so that, by proper choice of signs, A(x, x1)
is positive in the interval x; <x <xs.

For every admissible « (that is, > —a?) there exists a solu-
tion A(x, x1, @) of (2) vanishing at x =x; and such that A’(xq, %1, )
=A’(x1, x1), where A’'(x, x1, &) is continuous in x and of class
C'ina.}

We next study the related equation

3) (g + e + ri' + su = — al”(x, %1, @),

* Oskar Bolza, Vorlesungen dber Variationsrechnung, 1933, p. 60.

t That is, they have continuous second derivatives. Bolza, loc. cit., p. 14.

1 Replace (2) by the system #’=v and (¢+a?+a)v'+rv+su=0, and apply
the existence theorem given by Bolza, loc. cit., p. 187.
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whose general solution can, by the method of variation of
parameters, be expressed in the form
(4) = cu1(x) + caua(x) + ad(x, o),

where

¢ A%, %1, @)us(x)dx
A%, o) = ui(4) fx‘ (@ + a)D()

= A(x, %1, @)ui(x)dx
— uz(x) fx‘ (l] + a2)D(x)

ui(x)  ux(x)

PO =1 ww

# 0 in the closed interval [z, x,].*

A(x, x1, @), as a particular solution of (3), can be represented in
the form (4); and, since it vanishes for x =x;, we obtain

(5) A(x: %1y a) = >‘A(x7 .’)01) + OtA(x, a);

where in general N is a function of a. Clearly A(0) =1.
E satisfies IV by hypothesis. If it fails to satisfy IV’ for the
L corresponding to a =0, we have

A(xg, 21, 0) = N0)A(xe, x1) = A(x, 21) = 0,
while, if a second a0 has the same property, we have

A(xe, 21, @) = Ma)A(%e, %1) + ad (%, @) = ad (%, @) = 0.
This requires
(6) A(xe, @) = 0.

But A
21 A 1 , X
Az, ) =f (%, %1, @) A(w, x2) i
s (¢ + a)D(w)

A(%, %) =
_ Emff (%, 21, 0)da
A&, ) [A" (21, 21, @) — A(2, %1, @) ]
- (¢ + a)D(2) ’
(21 < & < %57 = q(%)),

* Bolza, loc. cit., p. 75.
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where A(x, x2) is written for ua(xe)u:(x) —ui(xe)ue(x). This frac-
tion can not vanish, the first factor in the numerator being dif-
ferent from zero by IV, the second factor being the difference
between two terms of opposite sign. Thus (6) is false; and there
is at most one L, namely the one for which « =0, for which E
fails to satisfy IV’.

If A(xs, %1, 0) =0, we have A(xg, x1, o) =ad (%2, o) from (5).
Furthermore A(x., %1, &) must then have a minimum of zero for
a=0;* so that its derivative, which is 4 (x., 0), must vanish.
This is a special case of (6), which has been proved to be false,
so that IV is a necessary condition.

3. Sufficient Conditions for a Minimum for L. We assume an
arc E: y=e(x) satisfying the necessary conditions I, II, III,
and IV/ for J. If II is strengthened to II,, we can show that
this arc satisfies the classical sufficient conditions for L.

Comparing the Euler equations, we see that if £ satisfies I
for J it does the same for L. The E-functionst for the two prob-
lems are related by the equation

EL(x7 Y, 3", V') = Es(x, Y, 3", ) + k2(y, — Y2,

so that II; for J implies 11y for L. We have seen in §2 that III
for J implies III’ for L and the condition IV, requires IV’ for
L as a matter of definition.

Hence E furnishes a proper strong minimum to L relative to a
certain (x, v) region R, which in general depends on k.1

4. Sufficient Conditions for an Improper Strong Relative Mini-
mum for J. We must find how to strengthen our conditions so
as to insure a field§ F which is independent of k. To that end
we replace I11 by I11; and consider the line A: x=x, y =5\ —7y1,
together with a slope function P(\) =m\+e¢’(x1). The extremals
for L are y=v(x, a, b, ), and the equations

* A(2s, %1, @) >0 for @50 by IV and the choice of signs preceding equation
3).

1 This is the only direct reference to the E-function. There need be no con-
fusion with our notation for the curve E: y=e(x).

1 If E satisfies III’ and IV, but not IV’, for J, R reduces to the curve E
as k approaches zero.

§ Bliss, loc. cit., pp. 132-33.
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7\ + y1 — y(x17 a,b,a) =0,
m\ + ¢/ (%) — ¥ (%1, 0,0, @) = 0,

define a =a(\, o) =d(y, ), and b=>b(\, &) =b(y, a)* for any ad-
missible « and for every y for which (x4, y) is in the region where
111, holds. These implicit functions are of at least class C’ in
their respective variables. We thus have a family of extremals
of parameter A for each admissible ¢,

y = é(x,\, @) = y[xy a’()" a)7 b()" a); 0‘]7

intersecting A and including E for A=0. We wish this family
to furnish a field.

If there exists an x, (x1<x=x2), such that ¢(x, N\, @)
—é(x, Ny, @) =0, there is a X, (A1 <N <\q), such that

ab

¢)\(x) Xy a) ya N "l"' Yo o5 an = 0.

This can be expressed in the formt
Ya(%) yo(®) m | ya(x)  ys(x)
Ya (1) ¥4 (21) "Dy ya(®1)  y5(%1)
J’a,(xl) y/b(xl) 0.1

ya (%1) ¥ (x1)

n

Q)
D1 =

We shall say that E satisfies the condition IV, if constants
6>0, >0, and 4 exist such that§

Fa(x) Fo()
Fa(®1)  Fo(21)

Aw, x1, Y, @) =

is, in absolute value, greater than § in the region x;<x <.,
|y—y1| =<7, A=a> —a? The first determinant in (7) has a
finite limit as # approaches zero; and hence, if # is small in ab-
solute value, IV, insures that the expression will not vanish
and that no two extremals of the family pass through the same

*a,b,a, and b also depend on m and %, which are omitted in the notation.
1 ya(x), + + - are written for y,[x, a(\, @), b\, @), a], -
1 The method used by Bolza, loc. cit., pp. 73-75, shows that D, 0.
§ 9a(x), - - - are written for y,[x, a(y, a), b(y, a)a]
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point. This condition also requires ¢ to be strictly monotone in A
for a given x and «, so that an extremal of the family passes
through each point of a certain region F about E. The region F
is a field and is independent of & (that is, of «).*

Finally, if E satisfies I, II,, III,, and IV}, we have L(E)
<L(C) for every C#E in F. But

L(C) = J(C) + e, e>0, lim e = 0.
Furthermore L(E)=J(E), so that J(E) <J(C)+e, and finally
J(E)=J(O).

5. Applications. The line y=0 is an extremal for a problem
involving any one of the following integrands:

/= M(x,9) + N, )y, M, =N,
f=a+ 9+t
f=y"

Our sufficient conditions for an improper minimum are met by
y=0in each case, but III’ is not met for any of them.

THE UNIVERSITY OF MISSOURI

* Condition IV’ could be replaced by the following. There exist constants
7>0, £>0, and 4 such that E satisfies III for xo <% <x», xo=%1—# and such
that A(x, xo, ¥, @) 0 for xo=1x1—£, xo<x =%, |y—y1| <n, AZa>—a? See
Bolza, loc. cit., bottom p. 103.

t An example given by Bolza, loc. cit., p. 35.



