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A GENERALIZATION OF SCHWARZ'S LEMMA*
BY CONSTANTIN CARATHEODORY

1. Introduction. We consider the family of functions f(z),
which are regular inside of the unit circle, which vanish at the
origin, and whose absolute value |f(z)| is less than one in that
circle. Taking two points 2z; and 2 in the interior of the unit
circle we inquire about the maximum M (z1, 22) of the expression

0 J(z2) — f(z1)

Z9 — 21

if f(2) describes the family of functions considered above.

This maximum can never be less than one, because the func-
tion f(z)=gz itself is contained among the functions of our
family. But in a great number of cases M (21, 22) is exactly equal
to one. Thus if z is taken equal to zero, the assertion that
M(0, 25) =1 is only another way of formulating the lemma of
Schwarz. Again, if we assume that the ratio z/2; is real and
negative, we have

| f(z2) — fGz) | < | fG) |+ | £z |,
|5 — 2| = | & +|2;

and, using the lemma of Schwarz, we find that M (z1, 22) =1.
In the third place, we have M (21, 25) =1 if both points 2z, and 2,
lie on the circular disc | 2] £22—1. This is an easy consequence
of the fact that for all points of this figure the expression
If’(z)| is never greater than one.t We are going to analyze the
questions which arise from these different examples by de-
termining completely all the cases for which M (21, 2.) =1.

2. An Auxiliary Funciion. We begin with the obvious re-
mark that our result will not be altered if we neglect from the
outset all the functions of the form f(2) =e¥z for which the ex-

* From an address delivered before the Society under the title Bounded
analytic functions, on November 27, 1936, by invitation of the Program Com-
mittee.

t J. Dieudonné, Recherches sur quelques problémes relatifs aux polynomes et
aux fonctions bornées d'une variable complexe, Annales de 1'Ecole Normale, (3),
vol. 48 (1931), pp. 247-358; in particular, p. 352,



232 CONSTANTIN CARATHEODORY [April,

pression (1) is identically equal to one. For the remaining func-
tions of our family we can put

(2) f@) = z(), with  [g@)] <1,

and we may introduce the notation

3 2(z1) = a.

The function ¢(2) which is defined by the equation
a — g(z) 21— 3

(4) = é(2),

1 — ag(s) 11— Z13

is regular inside the unit circle; and it is readily seen that, for
all points of that circle,

(5) | $(2) |

Using these formulas, we find

a(l — z12) — (21 — 2)¢(2)

IIA

© TRy e

(7 J(z1) = za,

and finally

(®) f(z2) — f(z1) _ a(l — %120) + (32 — adz)d(zs) .
25 — 21 (1 — 2122) — a(z1 — 22)¢(22)

Now the function (6) always belongs to our family provided
|a| be taken less than one and ¢(z) be a regular analytic func-
tion inside the unit circle which satisfies the condition (5). Con-
sequently the value of M(z, 2,) can be obtained by calculating
the maximum of the absolute value of the right-hand side of (8)
under the conditions

%) la] <1, | $(z) | < 1.

For a given value of ¢, the maximum value of this last expres-
sion is attained at some point of the unit circle |<;b| =1, say at
the point —e®. But if we multiply both a and ¢(2.) by e,
the absolute value of the right-hand side of (8) remains un-
altered. Hence we may also calculate M (z1, 25) as the maximum
of lw(a)] for ]a’ <1, if we define w(a) by the relation
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a(1l — 2122) — (32 — adz1)
(1 — 2129) + a(z1 — 39)
which we obtain from (8) by putting ¢(z) = —1.

(10) w(a) =

3. A Necessary and Sufficient Condition. We remark that we
inay write

a(l — 2129 + a@z1) — 22

(11) w(a) =

b
(1 — 2129 + az1) — dszq
and that, with the notation

4
(12) 7 S—
1 - 2122 + le

w takes the form

(13) w = S

1— au
The absolute value of this last expression is always greater than
one for |u| >1, equal to one for |u| =1, and less than one for
|| <1. This well known fact may be shown also by the
formula

(14) = >0,

We have therefore the following result: if for some value of a
(with |a] <1) the value (12) of u has a modulus greater than
one, we shall have, for this same value of @,

(15) || >1,

and consequently M(zi, 2,) >1 will hold. But if, for all values of
|a] <1, we always have |«| <1, it follows that we shall always
have also |w| =1, and M(z1, 2) =1. A necessary and sufficient
condition that we shall have M (2, 22) =1 is therefore given by
the inequality

(16) }Zz|§|1—2122—|—dz11, for la|<1.

This being the case, the circle around the origin with radius | z.|
has no point in common with the interior of the circle of center
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1 —2z2, and radius {zl| . Conversely, the inequality (16) will hold
if these circles have no common point interior to both. Conse-
quently the condition (16) may also be written in the form

(17) \Zl‘+lZ2‘§!1_‘2122|;
that is, in a form in which the parameter a is no 'anger involved.

4. Simplification of the Condition. This last inequality can be
replaced by another which, although equivalent to it, is much
simpler in form. Squaring both sides of (17), we get the condition

(18) |m |2+ | z|2+ 2] o] | 22| S 1 — 212 — 23 +

21 2] % I“,
which is exactly equivalent to it. From the inequality

(19) - 7:'122 —_ 2122 g 2 l Zl|

Zal,

which is always true for all pairs of points z;, 22 for which (18)
(or (17)) holds, it then follows that we must have

(20) (1 =] ]|z =o.

It is therefore impossible that one of the points be outside and
the other inside the unit circle, and a condition that none of
these points be outside the unit circle is given by the inequality

(21) | 21| ] 2| = 1.

Adding now to the members of (18) those of the identity

(22) |20+ 22]2 = | 21]2 + | 222 + 2082 + Zuze,
and then reducing, we obtain

(23) gt gt S (1 — | zm|)

If (21) holds, this is equivalent to

(24) |20+ 22| + | 222 1.

This last relation expresses therefore the condition that (17) and
(21) hold simultaneously. Whenever it is satisfied, we need not
state that the points 2; and 2. do not lie outside the unit circle.
This most elegant form of the inequality (17) was pointed out
to me by Szegt; it shows at first sight the symmetry in 2z; and 2,
of the condition obtained.
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5. Proof of Sufficiency of a Related Condition. Take now two
points 2; and 2z, inside of the unit circle, for which (24) or the
equivalent condition (17) holds; suppose also that

(25) la| =p < 1.

We are going to show that under these assumptions the expres-
sion (1) cannot exceed a number which is actually less than
one. We conclude first by the reasoning of §2 that any number
which is not smaller than the upper bound of |w(a)| under the
condition (25) is suitable for our purpose.

Using (25) and (17), we have
(26) |1—2122+(izll§|1 —ﬁlzzl—plzll
= (1—p)|a|+]2l,

and consequently, by (12),
a |22| 4 (1—P)121| B
A=p|a|+|za]  Q=p|a|+]z]

Both numbers |a| and || being not greater than one, we have
the well known inequality

<1.

QN |ul =

I“’(a)lz a—u Ial+\“!‘
(28) 1—aul = 1+4]al|ul
L a=lapha—Jul)

1+ o]

Replacing in this inequality |a| and |u| by their upper bounds

from (25) and (27), we get finally

1 — 2

(29) |ow@]| =1 -~ (——p) | -—2»1~|~— —
(=0 |z|+ A+ p)] 2]

and we can therefore write
(1 — p)2| 2|
T U=p a0+
6. Statement of the Theorem. We infer from this last result that
the only functions f(2) of our family for which, under the as-

sumption of (24), the expression (1) attains its maximum value
one are precisely those which we discarded at the beginning of

(30)

Z9 — 31
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§2. This completes our proof and we can state the following
theorem.

THEOREM. For every pair of points zi, 2, lying inside the unit
circle and salisfying the condition

(31) lZl+Zg|+|ZlZ2lé1,

and for every analytic function f(z) which is regular for |z| <1,
which vanishes at the origin, and which fulfills the conditions
| f(2) ] <1 everywhere in the circle, we always have

J(z2) — f(a1)

Z9 — 21

(32) <1,

except for the case where f(2) is a linear function of the form e¥z.
For every pair of points 21, 25 inside of the unit circle for which

(33) |21+Zzi+|21221>1,

there exist, on the contrary, analytic functions satisfying all of the
above conditions for which the left-hand side of (32) has values
greater than unity.

Taking 270, and using the relation (30), we can replace the
inequality (32) by another one that is more accurate. We remark
for this purpose that we can take, in (30),

o] = 0]

El

(34) p=

and that therefore we may write

f(z2) — f (Z_lz

%9 — 21

35
o (2] = s |

>
e (e =G |) + 2| (o] + ]G0 ])

This last inequality involves the following one, in which |22|
does not appear on the right side:

J(z2) — f(z1)

Z9 — 31

([a] =] fG)])?

36) 1 — y
10 T G o)) ) [ G = TaiD
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f) = f@) | (anl = sG]

Z9 — 21 2‘21!

(37) 1 -

Finally, if we assume that | 2| <|zi|, we can replace this last
inequality by the following stronger one, which we obtain di-

rectly from (35):
1 2
=—(1—- .
(=1

7. The Geometric Meaning. In order to find the geometric
meaning of the condition (31), we take z; =4, where & is real,
positive, and less than one; and we put 2, =x+414y. We can then
write

(39) (o 1) 9 S 1 — i(a? 4 e,

Squaring both sides of this last inequality, we get, after some
reductions,

(40) 2k 4y £ (1 — (1 — 2> — y?) — 2%z,

fo) = fla)

Z9 — 31

e

21

(38) 1—

and this leads to the relation
(41) [ — B — 2 — y?) — 2hx]? — 4h2(x2 + y?) = 0.

Since the expression on the left side of (41) is positive at the
origin as well as on circles x2+y?= R? for large values of R, and
is negative on the circle

(42) A=)+ y2— 1) + 2hx =0,
the curve which is represented by
(43) [(1 — B (w2 + 92 — 1) + 2hx]? — 4h2(22 + 9%) = 0

consists of two loops, one of which lies inside of the circle (42)
and the other outside of the same circle. On the unit circle
x?+y?2=1, the left side of (43) has the value

4n(x2 — 1) £ 0,

which shows that the unit circle also divides both loops.

It follows finally that the inner loop of the curve (43) divides
the unit circle into two regions. In the one of these regions,
which is convex, the condition |z+/%| +|2k| <1 is fulfilled. The
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boundary of this region, which we shall call 4, touches the unit
circle at the point x = —1, y=0. In the second region B, which
is horn-shaped, we have |z+h| +|zh| >1.

8. The Curve whose Stereographic Projection is the Curve (43).
Since the curve (43) is bicircular, that is, since it has the circular
points at infinity as double points, it is convenient to consider
it as the stereographic projection of a spherical curve. The
stereographic projection of the sphere

1
(44) gt it

on the plane with the coordinates x and v is defined by the
formulas

(45) — y y —_ _M,ﬂ_‘,}:) x? + y2 — ,___“_..

With these new variables, the equation (43) takes the form

2
(46) BER + 2h(1 — BOEC + (1 — h* 4 bH)§2 = z
The spherical curve with which we have to deal consists there-
fore of the intersection of the sphere (44) with the elliptic cylin-
der (46).
We introduce the new rectangular coordinates £’ and {’ by
the formulas

(47) £=Fcos¢+ ¢ sin ¢, = —¢sing + ' cos o,
1 . h
(48) cos ¢ = ?{':_7517;: sin ¢ = »—(1»;»};25;/;
The equation (46) then takes the form
(49) h2E'? 1 ¢ = t
h? 4

The part of this curve which corresponds to the inner loop of
the bicircular curve (43) is determined by the inequalities

1 1
(50) — - S S, S e
2(1 + )i 2(1 4 A2 2(1 + h2)L2
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9. Osculating Circles at the Vertices of the Curve (43). Using
these formulas, we can obtain readily all of the properties of the
curve (43) which are important for the problem we are consider-
ing. Thus we can show that, when % increases from zero to one,
the region 4 shrinks continuously; for small values of %, this re-
gion fills nearly the whole of the unit circle; if % tends towards
one, this region reduces to a narrow band which surrounds the
radius extending from —1 to the center.

As an example of such computations we shall determine the
osculating circles at the four vertices of the boundary of the
region A4, that is, at the four points in which the osculating
circles do not cross the curve.

Two of these points correspond to the end-points of the arc
(50) of the ellipse (49). If we determine the tangents to the el-
lipse at these points and the segments of these tangents lying
inside the circle

1
(51) R R B

the stereographic projections of these segments coincide with di-
ameters of the osculating circles for which we are looking. We
find in this way that the diameters of these circles are given by
the formulas

(52) | < <1—h—h2 0
>=3V=1+h’_h2) y = )
1— i 1—4

(53) TT
T+ it 1+ 4

We can also write the equations of the circles themselves; we

find
(54) A4+r—m)2+ ) +2hx— (1 —h— 1% =0
for the circle with the diameter (52), and

(1 + £ (x* + »%) + 221 — B)(1 + B)x

(55)
— (= B+ R4 k) =0

for the other circle.
The two other vertices of the bicircular curve correspond to
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the vertex £’ =0, {’= —h/2 of the ellipse (49), and are symmet-
ric with respect to the x axis. The osculating circle passing
through that point is the stereographic projection of a circle on
the sphere. Putting

h
(56) w=g

and determining two suitable constants p and ¢, we see that
this circle lies on the plane

h=v2-1
&y
A B
X
0.
&=

Fic. 1

(57) 2y = pu+gq.

Using (56), we can write the equation of the ellipse (49) in the
form

(58) ARE — Ahu + dy? = 0,

and we see that the intersection of the sphere (44) with the
plane (57) has the form

(59) 482+ (pu+ @ + Qu — B)? = 1.
The curves (59) and (58) osculate at the point # =0 if we have
(60) g=% 1 — )", — kpg=2h(1 — Y.

This gives for the equation of the two circles of osculation in the
original variables
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(1 = Wa(h(s2 + 92 + 1))
+ (1 + B)Y2(2hx + (22 + 92 — 1)) + 2%y = 0.

14

(61)

Fi1G. 2

It is very easy to sketch the bicircular curve which forms the
boundary of the region 4 after the circles (54), (55), and (61)
have been drawn; indeed, both circles (54) and (55) lie com-
pletely inside the region 4. Both circles (61) surround 4 and a
rather large arc on each of these circles may be considered as
coinciding with the boundary of 4. In Figs. 1 and 2, these
circles have been drawn first for the case A=2Y2—1, in which
the point z=#5 lies on the boundary of the region 4, and sec-
ondly for A%2=2Y2—1, in which case the circles (61) have radii of
minimum value.
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