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4. Remark. Let the sequence Ey, Es, - - - be asin §2. Then we
can even assert that for every N<1 there exists an infinite subse-
quence E;,, E;,, - - - such that for every p and g

u(Ei,Ey) = Mm?.

We show first that there exists an infinite subsequence
Eyy, E, - - - such that u(Ey, Ex,) ZAm? for every p. Suppose
that no such subsequence exists; then to every n=1, 2, - -
belongs a $, such that

w(E.Ey) < Mm? for m = n+ pa.

Writing #1=1, ne =01+ pn,, #3=n2-+Pn,, + - - , we have then for
every 7 and &,

W(En;En,) < Am?,

which contradicts the theorem of §2. The proof is now easily
completed by applying the diagonal principle.

CAMBRIDGE, M ASSACHUSETTS

ON THE ZEROS OF THE DERIVATIVE OF A
RATIONAL FUNCTION*

BY MORRIS MARDEN

1. Introduction. The primary object of this note is to give a
simple solution of a problem already discussed by many authors
including the present one.t It is the problem of determining the
regions within which lie the zeros of the derivative of a rational
function when the zeros and poles of the function lie in pre-
scribed circular regions.

THEOREM 1.1 For j=0,1, - - -, p let r; and o be real constants

* Presented to the Society, September 4, 1934.

t For an expository account and list of references see M. Marden, American
Mathematical Monthly, vol. 42 (1935), pp. 277-286, hereafter referred to as
Marden I.

} See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 81-109,
hereafter referred to as Marden II.
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with of =1; let Z; denote the circular region defined by the in-
equality
O'ij(Z) = O'j(I z — (X;,'P - 7’,‘2) é 0

and let z; be an arbitrary point of the region Z;. Then every zero
of the derivative of the function™®

1@ = I1 6 = s

satisfies at least one of the p+2 inequalities

¢Y) oiZi(z) =0, (] =0,1,---,9),

2 lmzla'i"v
(57557 =0

Theorem 1 holds even when the m; are complex numbers.
When, however, they are all real, the use of the identities

(aj — 2)(ax — 2) + (a; — &) (ar — 2)

=laj =z o=z~ o —

m(a; — &)

(2) Y= 7 () I ,é Z(2)

and
2
|ai = 2| = Zi(z) + 77,
enables one, after expanding (2), to write

Z(2) L z": nm ; i i M MET ik

II;:OPZ i(2) j=0 Z:(Z) =0 k=j+1 7 (Z)Zk(z)

©)

where n=_m; and
Tik = | a; — Oé]c[2 — (lm,l m{lajrj - [ mk[ mk—lakrk)2.

The latter is the square of the common external or internal tan-
gent of the circles Z;(z) =0 and Z;(z) =0 according as the prod-
uct I'm,mkl (mmi)~o;0 is positive or negative. The equation
Z(2) =0 represents for 0 a p-circular 2p-ic and for =0 in
general a (p—1)-circular 2(p—1)-ic curve. The properties of
these curves are studied in Marden 11, p. 92.

* Where no limits are indicated, a product or summation is to be taken
from j=0toj=p and from k=j-+1to k=p.



402 MORRIS MARDEN (June,

2. Three Lemmas.* (1). If the points to, t, - - - , t, varying in-
dependently of one another describe the closed interiors of the circles
To, Ty, - - -, Tp, respectively, the center and radius of T; being v,
and p;, then the point w =Z:;0m7-t,~ describes the closed interior of a

circle W with center aty =Ef=0m,~'yf and radius of p =Zf=0| mj-l 0j.
For

Y4
|w—v|=|2Xmt;—1)| =0
=0
conversely, if & and 0 are arbitrary, 0=k =<1, and if m;(¢;—~,)
=k| m,~|pie“’, then w—'y=2k| mi[p,-e“’=kpe”.

(I1). If the points t;, (j=1),vary as in Lemma (1), but the point
to describes the closed exterior of its circle T, the locus of the point w
s the closed exterior of a circle with center at v = Z myy; and
radius p=2|mo|po—2 =0|m,,p, provided p>0, and is the entire
plane if p=0.

For, when p >0,
Y4
|w"Y' Zlmo(to—')’o)l — | 2 mit;— )| = p;
=1

conversely, if k2 and 6 are arbitrary with 2=1, and if
mo(lo — vo) = “ mol po + (k — 1)p]et,
and
mi(t; — vi) = — | m;| pie?, Gz,

then w—vy = kpe®.

If po decreases while p;, (7=1), remain constant, p will ap-
proach zero and the locus of w will become the entire plane. The
locus is, therefore, the entire plane for p <0.

(III). If the points t;, (j>k=1),vary as in Lemma (1), but the
points t;, (j=<k), describe the exteriors of their circles T, the locus
W of w is the entire plane.

For, if each ¢t;, (1=<j=<k), were to vary merely interior to a

* See J. L. Walsh, Transactions of this Society, vol. 24 (1922), p. 61 and
p. 169; also H. Minkowski, Collected Works, vol. 2, p. 177.
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circle T/ drawn exterior to but not enclosing the circle T'; while
the remaining ¢; vary as indicated in Lemma (III), and if the
radius p/ of T} were chosen so that

k P
[ mo| po — Zlmflpf’— 2| mil ps =0,

i=1 i=k+1
then by Lemma (II) the locus of w would be the entire plane.

3. Proof of Theorem 1. Let 2z be any fixed point exterior to all
the regions Z;; that is, let 2 be such that ¢;Z;(z) >0, all j. Since
0;Zi(2;) =0, point t;=(z;—2)"! lies in or on the circle T'; with
center v;=(a;—2)/Z;(2) and radius p;=(07y;)/Zi(2). According
to Lemma (I), the locus W, of the point w ——-ijt,« will be defined

by the inequality:
» mi(a; —32) |2 P mil ogir\2
@  |o- 3y —)—(z——' ’l”)éo
im0 Zi(2) = Zi(2)

Now, in order to be a zero of f’(z), point 2 must be a root of
the equation

5) AN Z”: mi 0;

f(z) =0 % — 3%

that is, point w =0 must satisfy inequality (4). Hence, any zero
of f'(2), not satisfying any of the inequalities (1), must satisfy
(2); that is to say, ¢Z(2) <0, where o =]I0o;.

4. A Locus Problem. What then is the locus Z of the zeros of
f'(2)/f(z) when the points z; vary independently within their
circular regions Z;?

Theorem 1 reveals that ¢Z(z) =0 for any point 2z of locus Z
exterior to all the regions Z;. Conversely, if exterior to all the
regions Z;, any point 2z for which ¢Z(z) =0 belongs to the locus
Z. With the aid of Lemma (II), it can be shown that a point 2
interior to just one region Z; belongs to locus Z if and only if
either ¢Z(z) =0 or ¢S(2) =0, where

S@ g il e

12z = Zi(a)
(The curve S(2) =0, in general a p-circular 2p-ic, consists only
of points on the boundaries of two or more regions Z; or interior
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to at least one region Z;, the points z interior to just one region
Z; satisfying inequality ¢Z(2) =0.) Likewise, with the aid of
Lemma (III), it can be shown that every point common to two
or more regions Z; belongs to locus Z.

If a given point 2z is to be on the boundary of locus Z, point
w=0 must cease to be a point of W, whenever the regions Z;
and hence W, are diminished, no matter how slightly. That is
to say, the point w =0 must be on the boundary of the locus W,.
This implies that Z(z) =0 if z, a boundary point of locus Z, is
exterior to all the regions Z; or interior to just one region Z; with
dZ(2) =0. It also implies that no boundary point 2z of locus Z
may be either interior to just one region Z; with ¢5(2) =0, or
interior to two or more regions Z;; for, in those cases, the locus
W, is the entire plane.

In short, the locus Z is a set of regions bounded by the ovals
of the curve Z(z) =0, each region, according to Marden II,
being simply-connected.

5. Applications. When p=2 and n=mo+mi+ms=0, equa-
tion (5) may be written as the cross-ratio

(6) (2021297) = (30 — 22)(21 — 3) - _ 7&
(20 — 3)(21 — 22) mo
Here
Z(z) = — momitorZz(z) — mimar1aZo(z) — mamer2Z1(z) = 0,

S(z) = | mol re00Z1(2)Z2(3) + ] ml‘ r101Z9(2)Z(2)
+ | ma | ra09Z6(2)Z1(z) = 0,

represent in general a circle and bicircular quartic, respectively.
If X denotes the coefficient of the term (x2+?) in the expression
Z(2), the region ¢Z(z) =0 is the interior or exterior of the circle
Z(2) =0 according as oA >0 or oA <0. Hence, if all the points
for which ¢S5(2) <0 lie in the region ¢Z(2) =0, the locus Z will
be the interior or exterior of circle Z(z) =0 according as oA >0
or oA <0. If, however, not all the points for which ¢S(z) =0 lie
in the region ¢Z(3) <0, the locus will be the entire plane. This
discussion verifies the following theorem due to Walsh.*

* J. L. Walsh, Transactions of this Society, vol. 22 (1921), pp. 101-116,
and Rendiconti di Palermo, vol. 46 (1922), pp. 1-13. See also A. B. Coble,
this Bulletin, vol. 27 (1921), pp. 434-437; T. Nakahara, T6hoku Mathematical
Journal, vol. 23 (1924), p. 97; and Marden II.
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If the points 2y, 21, and 2, varying independently of one another
describe given circular regions Zo, Z1, and Z., then the point z de-
fined by the constant cross-ratio (2¢212:3) =c also describes a circu-
lar region Z.

On allowing a number of the regions Z; to coincide, we deduce
from Theorem 1 the following corollary.

COROLLARY 1. If all the zeros of a polynomial fi(2) of degree
n; lie in the circular region Z;, then every zero of the derivative of
the product

4
11 lfit=)]%
i=0
will satisfy at least one of the p+2 inequalities (1) and (2) with
mi=mnq;.*
In particular, upon setting f;(2) =f(3) —v;, we obtain from
Corollary 1 a generalization of a theorem stated by Jentsch and
proved by Fekete.

COROLLARY 2. If all the points at which a given polynomial f(z)
takes on the value vy ; lie in the circular region Z;, then every root 2
of the equation

p mi

Z -
im0 f(z) — v
satisfies at least one of the p+2 inequalities (1) and (2).

=0

6. Generalizations. By requiring w=N\ instead of w=0 to
satisfy inequality (4), we are led to the following result.

THEOREM 2. Under the hypotheses of Theorem 1 or of Corollary
1, every zero of the function f'(2) +Nf(2) satisfies at least one of the
p+2 inequalities

(7) U'Z'(Z)éo, (j=0> 1)"'7?’);
m,(a,—z) P [m,| airi\*
® _(i‘: 2 )=

i=0 Z; (z)

* This corollary contains as special cases a number of important theorems
due to Gauss-Lucas, Laguerre, Bécher, and Walsh. See Marden I.

t R. Jentsch, Archiv der Mathematik und Physik, vol. 25 (1917), p. 196,
prob. 526; M. Fekete, Jahresbericht der Deutschen Mathematiker-Vereini-
gung, vol. 31 (1922), pp. 42-48; Péblya-Szegd, Aufgaben und Lehrsitze aus der
Analysis, vol. 2, p. 61, probs. 126-127.
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If all the m; are real, the left-hand side of (8) may be rewrit-
ten, with the aid of the identities given in §1, as

P | A I%’IL,'F,’(Z) ? 4 mMET jk

(9) > >

)
im0 nZi(z) i=0 k=i+1 Zi(2)Zk(2)
where
@ =|s—(@—mN)[*—r2.

The equation I';(z) =0 represents the circle obtained by trans-
lating the circle Z;(z) =0 in the direction and magnitude of the
vector #/\. Set equal to zero, expression (7) represents a (p+1)-
circular 2(p+1)-ic curve with singular foci at the roots of the
equation

P m;

D

j=0 2 — «a;

= 0.

In particular, assuming the hypotheses of Corollary 1, and
setting do—1=p=po—1=0, we find this curve to reduce to the
circle I'y(2) =0. In other words, if all zeros of a polynomial f(z)
of degree n lie in a given circle, any zero of the linear combination
I (2) +Nf(2) will lie either in the given circle or in the one obtained
by translating the given circle in the direction and magnitude of the
vector nA\~L*

Finally, by requiring w=g(2), an arbitrary function of 2z, in-
stead of w=0, to satisfy inequality (4), we obtain a theorem
similar to Theorem 2 for the zeros of the function f'(z) +g(2)f(2).
For example, if g(z) =%, and if all the zeros of a polynomial f(z)
of degree # lie in the circle lz| <r=<2n''2 all zeros of the func-
tion 2f(2) +f’(2) lie in the same circle.

UNIVERSITY OF WISCONSIN,
MIiLwAUKEE EXTENSION CENTER

* See M. Fujiwara, Téhoku Mathematical Journal, vol. 9 (1916), pp. 102—
108; T. Takagi, Proceedings of the Physico-Mathematical Society of Japan,
vol. 3 (1921), pp. 175-179; J. L. Walsh, this Bulletin, vol. 30 (1924), p. 52.



