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THE FORM wx+xy-+yz+zu
BY E. T. BELL
1. Introduction. In the usual notation,
N=N[n=wx+axy+yz+zu; wxzu>0 y=0]

denotes the number of sets (w, x, v, 2, #) of integers, subject to
the conditions indicated, satisfying the stated equation in which
7 is an arbitrary constant integer >0. Let {.(#) denote the sum
of the rth powers of all the divisors of #, so that {¢(#) is the num-
ber of divisors. Then

(1 N = §2(n) — nio(n).

This curious result is the only one of the numerous theorems on
quadratic forms stated by Liouville for which (apparently) no
proof has been published.*

We shall first show that (1) follows from

(2) 2N" = fa(n) — 2ngo(n) + $1(n),
N =N'[n=wx+ ay+yz+aut+ux; wxy2>0;, uz0],
and then prove (2). Another similar result is stated in §5.
2. Egquivalence of (1) and (2). The form in N’/ may be written
vz + (2 + 2w + 2(w + y);

and hence, by the conditions on the variables, w+y=y’>y.
Thus (2) is equivalent to

$a(n) = 2ngo(n)+1(n)

3
®) =2N'[n=yz+(G+a)utxzw; x, 9,3 w>0; u=0; w>y].

Applying the substitution (xz)(yw) to the last we see that (3)
holds also when the condition w >y is replaced by w <y.

Consider now the remaining possibility, w=7y. The equation
becomes

* J. Liouville, Comptes Rendus, Paris, vol. 62 (1866), p. 714; also, Journal
de Mathématiques, (2), vol. 12 (1867), pp. 47-48. Noted in Dickson’s History,
vol. 3, p. 237. Liouville points out why the theorem is unusual.
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4) n = (x+2)(y + u); %, 9,2>0; u = 0.

Hence if #=dé is any resolution of # into a pair of positive di-
visors, the number of solutions of (4) for a fixed (d, 9) is

Nld=x4+2 %,2>0]XN[6=y+u; y>0; uz0],

that is, (d—1)4§; and therefore the total number of solutions of
(4) is 2_(d—1)8, the sum referring to all pairs (d, 8). Thus (4)
has precisely n{o(n) —{1(n) solutions.

But all the solutions of

(5) n=yz+ (z + 2)u + xw, %, 9,2 w > 0; u =0

are exhausted by the three mutually exclusive sets in which
w>y, w<y, w="7y, respectively, and the number of solutions in
each of these has just been determined. The total number of
solutions of (3) is thus

Sa(n) — 2ngo(n) + F1(n) + nio(n) — $1(n),

or {2(n) —n¢o(n). Hence (1) follows from (2). Conversely, by re-
versing the steps, (2) follows from (1), so that (1), (2) are equiv-
alent.

3. Dependence of (2) on an Auxiliary Relation (6). Let ¢(u, v)
be finite and single-valued for all integer values of the variables
u, v, and beyond the condition ¢ (%, v) = —¢(v, u) for integer
values of «, v, let ¢(u, v) be arbitrary. Then

8—1
©) Y 6w+ 9, 2) = Z[ 3 60, d)],

r=1

> on the left referring to all (w, ¥, 2), that on the right to all
(d, 8), from

(7) d6=n=wx—l—xy+yz; d’6,w7x7y)z>07

in which all the letters denote integers and # is constant. Assum-
ing this for the moment, we shall prove (2).

The form in (7) is invariant under the substitution (xy)(sw).
Hence D>_w=) 2, the sums extending over all solutions of (7).
Taking ¢(u, v) =u—2v in (6), we get

(8) 225y = fa(n) — 2n50(n) + $1(n),
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the left member of which is

22 N[y =914 y2; 5 >0; 3 =0].
It follows that

ZN["/= wx + (x+z>(yl+y2)y w, ¥, %, y1>0r y2g 0]

is given by the right member of (8). By a change of notation for
the variables this result is (2).

4. Proof of (6). We now prove (6). The functions k(u), f(u, v)
are single-valued and finite for integer values of the variables,
and beyond the conditions (for integer values of #, or of #, v)

h(u) = h(—u),  f(u, ) = f(— u,v) = f(u, — v),

are arbitrary. Hence in a theorem concerning f(#, v) we may re-
place f(u, v) —f(v, u) by ¢(h(u), k(2)), where ¢ is as in §3. For f
we have the identity™®

> [f(d1 + do, 61 — 82) — f(61 — 82, d1 + d2) ]
8—1
= Z[(d — 1D){f(d,0) — f0,d)} +2 3 {f(r,d) — f(d, r)%],

r=1

the sum on the right referring to all (d, §), that on the left to all
(dly 61: d?y 62), Such that

(9) déo = n = d151 + d252,
in which all letters denote integers >0 and # is constant. Hence

2 d(h(dy + da), h(31 — 82))

8—1
- E[(d ~ Do), HO) +2 T $(0), h(d»]-
In (10) take h(u)Elu]. Then
> ¢(di+ ds, | 61— 82])

8—1
> [ (@ = 60,0 + 2.3 o0, d)].

(10)

(11)

* Equivalent to one stated by Liouville, Journal de Mathématiques, (2),
vol. 3 (1858), pp. 282-284. The first proof, by elementary means, was given
by T. Pepin, ibid., (4), vol. 4 (1888), pp. 84-92; I showed that the identity is
equivalent to one between doubly periodic functions of the first and second
kinds (Transactions of this Society, vol. 22 (1921), p. 215).



380 E. T. BELL [June,

According as 6;—6;>0, 6;— 86:<0, 6;— 6.=0 we have
b1 =0, + 6!,8] >0, n = dy(6y + 8!) + dobds;
dg = 61+ 064,08 >0, n = dib; + d2(61 + 67 );

n = 01(di+ds).

The third of these contributes D (d—1)¢(d, 0), summed over
all divisors d of #, to the left of (11). The forms in the first two
are equivalent under the substitution (dids)(8:82) (8/ 87 ) ; for the
first, | 8,— 8| =38/, for the second |8 —3:|=08{. Hence, by
the equivalence just noted, these two together contribute
2> ¢(di+ds, 8{) to the left of (11). Substituting these results
into (9), (11), and changing the notation,

(d2, 627 dly 61’) = (wr %, Y, Z)’
we get (6).

5. Amnother Similar Result. Other choices of ¢ in (6) give theo-
rems on numbers of representations. From the results already
given it is easily seen that

N[n=wx+ xy+ yz+ zu+ ux; %,y > 0; u,2,w = 0] = {3(n).
To prove this we require
N[n=a(w+y+u); xyw>0; uz0]=fn)— ),

which follows at once on noting that x=d, w+y-4u =239, where
n=dd, and that

Np=w+y+u, wy>0; u=0]

is the coefficient of ¢? in the expansion of ¢%(1 —¢)~3, and hence

is 8(6—1)/2.
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