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DISTRIBUTION OF MASS FOR AVERAGES OF 
NEWTONIAN POTENTIAL FUNCTIONS 

BY J. M. THOMPSON 

1. Introduction. I t has been proved that the average of a po­
tential function over a spherical volume and the average of a 
potential function over a spherical surface are themselves po­
tential functions.* This paper is concerned with the determina­
tion of the distribution of mass for these two spherical averages ; 
in addition, the distribution of mass for more general averages 
is obtained. 

2. Preliminary Theorems. The problem is solved by means of 
a theorem on the change of the order of integration of an iter­
ated Stieltjes integral. First it is necessary to state some pre­
liminary theorems. We recall the following elementary theorem. 

If h{Q) is continuous in Q and g{e) is a distribution of positive 
mass, bounded in total amount, and lying on a bounded set F {which 
may be taken as closed without loss of generality), then, for the 
integral over the whole of space, w, 

(1) I f h(Q)dg(eç) - Z HQiMei < usa, 

where the summation is extended over all the meshes of a lattice L8, 
of diameter ^ S, Qi is a point of the mesh ei, co« is the oscillation of 
h(Q) on a subset of F of diameter :g 8, and a^g(F). 

This theorem will be applied to the integral 

ƒ. h»(M,Q)dg(eQ,P), 

where hN(M, Q) is continuous in M, Q, and g(e, P) and F are 
bounded independently of P, so that o>« and a in (1) are inde­
pendent of M, P . 

THEOREM 1. If g(e, P) is a distribution of positive mass, 
bounded independently of P, on a set F bounded independently 

* G. C. Evans, On potentials of positive mass, Transactions of this Society, 
vol. 37 (1935), p. 250. 
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of P , and if f(e) is a distribution of positive tnass, bounded in all 
space, and if g(e, P) is summable with respect tof(e)y then 

G(e)= f g(e, P)df{eP) 

is a distribution of positive mass bounded in total amount and lying 
on the set F. 

In this theorem, it is not required that g(e, P) be continuous 
in P , so tha t the integral must be interpreted as a generalized 
or Daniell integral with respect to f(e). But in the theorems 
which follow, g(e, P) is taken as continuous in P for every mesh 
ofL. 

To prove that G(e) is a distribution of positive mass, we must 
show that G(e) is a non-negative, absolutely additive function 
of point sets (only Borel measurable point sets are considered). 

The first requirement follows immediately from the fact 
tha t g(ef P) and f(e) are non-negative for all P and e. In 
order to exhibit the second condition, let e = ei+e2+ • • • and 
e« = 0i+02+ • • • +en; as g(e, P) is a distribution of positive 
mass, we have 

g(e, P) = lim g{ei, P) , with gW+l9 P) ^ g{ei, P). 
« = 0 0 

Since g(e, P) is, as a function of P , the limit of an increas­
ing sequence of functions, the order of integration and passing 
to the limit may be interchanged ; so that 

G{e) = f g(e, P)df{eP) = lim f g&, P)df(eP) 

- lim [G(«0 + • • • + G(en)} = G(e{) + G(e2) + •••. 
« = 0 0 

Hence G(e) is a distribution of positive mass. Also G(e) is a dis­
tribution of mass lying on F; tha t is, G(e) = 0, if e • F = 0, because 
of the hypothesis tha t g(e, P) = 0, if e • F = 0. Finally, G(e) S [up­
per bound of g(e, P ) ] -f(w), so bounded. 

We state the generalizations of two theorems proved by H. E. 
Bray; the proofs are omitted as they are essentially the same 
as those given by Bray.* They depend on the inequality (1). 

* H. E. Bray, Elementary properties of the Stieltjes integral, Annals of Mathe­
matics, vol. 20 (1918-19), pp. 180-185. 
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THEOREM 2. If hN(M, Q) is a continuous f unction of M and Q, 
and is bounded in all space, if g(e, P) is a distribution of positive 
mass, bounded independently of P, on a set F bounded independ­
ently of P , and if g(e, P) is continuous in P for every cell e o f a 
net L, then 

K(M, P)= f h»{M, Q)dg(eQ, P) 

is continuous in M and P . 

THEOREM 3. If hN(M, Q) is continuous in M and Q, and 
bounded in all space, if g(e, P) is a distribution of positive mass, 
bounded independently of P, on a set F bounded independently 
of P, and if it is continuous in Pfor every cell e of a net L, and if 
f(e) is a distribution of positive mass, bounded in total amount, 
lying on a bounded set E (which may be taken as closed without loss 
of generality), then the integrals 

and 

fdf(eP) f h»(M,Q)dg(eQ,P), 

ƒ h»(M,Q)d [ ƒ g(eQ, P)df(eP)^ 

exist and are equal. 

We may now state and prove the concluding theorem in this 
series. 

THEOREM 4. If g(e, P) is a positive distribution of mass, 
bounded in total amount independently of P, on a set F bounded 
independently of P, and if it is continuous in P for every cell e 
of the net L, and if f(e) is a distribution of positive mass, bounded 
in total amount and lying on the set E, then 

J w J w MQ J w MQ L J w J 

(or both are +<*>), where fwg(e, P)df(ep) is a bounded distribu­
tion of positive mass lying on the set F. 
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If 

MQ MQ 

1 
- N, if > N, 

MQ 
the function hN(M,Q) is continuous in M and Q. 

By Theorem 3, we have 

fdfiep) f h»(M,Q)dg(eQ,P) 

= ƒ h»(M, Q)d [ ƒ g(eQ, P)df(eP)j. 

Let N become infinite ; we have 

f dfifip) lim f *»(Jf, 0Jg(«8, P) 
J w n=<x> J w 

The interchange of integration and passing to the limit in the 
left-hand member is justified because the integrand is an increas­
ing function of N, while the definition of the integral of a lower-
semi-continuous function with respect to a distribution of posi­
tive mass was used in the right-hand member. Applying this 
definition now to the left-hand member, we have 

J w J w MQ J w MQ L J w J 

This, combined with Theorem 1, establishes the theorem. 

3. Volume Averages. This theorem just proved enables one to 
exhibit the distribution of mass for the spherical volume aver­
age of a potential function in a form in which it may be evalu­
ated ; this is an illustration of the advantage sometimes gained 
by working with the more general situation. 

In the theorems tha t follow, u(Q) is the potential at Q of the 
distribution of positive mass, f(e), which is bounded in total 
amount and lies on a bounded set E. 
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THEOREM 5. The average of the potential function u(Q) over 
a spherical volume T(r, M)y of radius r and center M, is a po­
tential function of a distribution of positive mass with density 
(3/(47rr3))/{T(r, Q)}.In symbols, 

au(r, M) = —— f u(Q)dQ 
47rr* J r(r,M) 

(2) 
3 ƒ ^/(rfr,<9|«. 

47rr3Jw, MQ 

Let us form this spherical volume average and determine its 
distribution of mass. We have 

au(r, M) = —— f u(Q)dQ 
4xr3 J r(r,M) 

3 
f dQ f df(eP). 

Jr(r,M) Jw PQ 47rr3Jr(r,M) J w PQ 

As the integrand is a lower-semi-continuous function, the order 
of integration may be interchanged, so that 

au(r, M) = (df(ep) f dQ. 
4cirrzJw J r{r,M) PQ 

The inner integral is the potential at P of a sphere of unit den­
sity with radius r and center a t M, which is equal to the potential 
at M of the same sphere with center at P . Hence, 

Gu(r, M) = fdf(ep) f — 
4irrzJw Jr(r,P) M< 

dQ 
r(r,P) MQ 

3 

Jw Jw MQ 4 x r 3 J w J w MQ 

where g(e, P) ~m%\e- T(r, P)}, and m3 means the three-dimen­
sional measure of the set indicated. The quantity g(e, P) is evi­
dently continuous in P for every measurable set e. 

By means of Theorem 4, this volume average may be ex­
pressed in a form which enables the mass distribution to be eval­
uated , 
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(3) Ou(r, M)=-?-f—d\f tm{eQ-T(ry P)}df(eP)\ 
47rrzJw MQ LJ w J 

Consider the integral, 

„(«) = f m3{e-T(r,P)}df(eP), 

where e is an arbitrary bounded set measurable Borel. This func­
tion is an absolutely continuous function of e; in fact 

and v(e) is completely additive by Theorem 1. 
The integrand of vie) may be expressed as a Lebesgue inte­

gral, 

mz 
\e-Tir, P)} = f UR = f BiR, P)dR, 

J e.T(r,P) J e 

where we may define BiR, P) as 1, for RP <r, and 0, for RP^r. 
In this way BiR, P) is the limit of an increasing sequence of 
continuous functions of R and P, and we have 

(4) 

vie) = fdfiep) f BiRyP)dR = f dR f BiR, P)dfieP) 
J w Je J e J w 

= f f{T(r, R)\dR. 

Substituting this result in (3) and making use of the definition 
of the integral of a lower-semi-continuous function, we have 

- - — - l i m Ç h«(U,Q)d\ f f{r(r, X)\dR~\. 
47Tf3 iV=oo J w LJeQ J 

As hNiM, Q) is bounded and continuous, and vie) is absolutely 
continuous, we may change the Stieltjes integral to a Lebesgue 
integral. This gives 

Ou(r, M)=—- Hm f h?(M, Ç)/{r(r, Q)} dQ 

file:///e-Tir
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J w MO 4Trr*Jw MQ 

and the proof is complete. 
I t should be pointed out that the work of this section holds 

for the average over any three-dimensional open set. Let s(O) 
be an open set (therefore of positive spatial measure), s(M) the 
set obtained by displacement of s(0) as a rigid body, without 
rotation, so that 0 falls on ikf, and let s'(Q) be the reflection of 
the set s (M) through the midpoint of the line MQ. 

THEOREM 6. The average of the potential f unction u{Q) over the 
set s(M) is a potential f unction of a distribution of positive mass 
with density (l/[nizs(M)]) f{s'(Q)}. In symbols, 

Ou{s(M)} = — , x I u (Q)dQ = 
(M)} J8{M) m3{s(M)} 

ƒ MQ { 

The construction of the set s'(P) gives the potential at P of 
the set s(M), of unit density, equal to the potential at M of the 
set s'(P), of unit density; hence all the transformations made 
in this section on the spherical volume average are valid for the 
average over the set s(M). 

4. Spherical Surface Average. By means of Theorem 4, we may 
also determine the mass function for the average of a potential 
function over a spherical surface. 

THEOREM 7. The average of the potential f unction u(Q) over the 
spherical surface C(r, M), of radius r and center M, is a potential 
function of the distribution of positive mass, 

In symbols, 

- 1 - f nH{e-C(r,P)}df(eP). 

Au(r, M) = - 1 - f u(Q)dQ 
4cTr£ J C(r,M) 
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Treating the spherical surface average in the same manner as 
we have treated the volume average, we obtain 

AJr, M)=-*—( u(Q)dQ = J - f dQ f -^df(eP) 
4rTrrZJ C(r,M) 4:Wr2J C(r,M) J w QP 

— f df(ep) f dQ 
wr2Jw Jc(r,M)QP 

— f df(ep) f dQ 

4:Trr2Jw J w MQ 

where g(e, P)=m2{e- C(r, P)}. For a given P , this function is 
additive and bounded for cells e of a three-dimensional lattice, 
and hence can be extended by definition uniquely to all sets 
spatially measurable Borel. 

As g(e, P) is a continuous function of P for every cell e of a 
net L, Theorem 4 applies, and we may thereby express this aver­
age in a form that exhibits its mass function in terms of C(r, P) 
and ƒ ( » , 

(5) Au{r, M)=-^—( — d \ ftn2{eQ-C(r, P)}df{eP)\ 
4cirr2J w MQ \_J w J 

This result requires no restriction on f(e) other than those we 
have already stated. However, we shall state also a special case 
of Theorem 7. 

THEOREM 8. Iff {T(r, Q)} is differentiate with respect to r, and, 
for a fixed neighborhood of the given value of r, df {T{n, Q)} /dr 
is bounded independently of the point Qt then the average of the 
potential function u(Q) over the spherical surface C(ry M) is a 
potential function of a distribution of positive mass with density 
(l/(47rr2))d/{ r ( r , Q) ) /dr. In symbols, 

(6) AJr, M) = I dQ. 
W J * MQ dr 

We have, for a rectangular cell e, 

m f rr m l r **{<'[*(«, P) -Tjr, P)]} 
(7) m2\e-C(r, P)\ = hm > 

*=oo r{ — r 
where r<ri+1<r{ and limt=00rt = r. 
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Using the results given in (4), we have the following equality, 

• m , { * . [ r ( r < , P ) - r ( r , l > ) ] } 

r 
*J in 

dfiep) 
ft — r 

-ƒ; r{ - r 
dQ. 

The integrand of the left-hand member belongs to a sequence 
of measurable, uniformly bounded functions, as a function of P , 
whose limit exists when i becomes infinite; so we let i become 
infinite and interchange the order of integration and pass to 
the limit for the left-hand member. The same considerations 
hold for the integrand of the right-hand member as a function 
of Q. Using (13), we have 

fm*{e-C(r,P)}df(ep) = f 
ô/{r(r,C)j 

dQ. 
dr 

The quantity df {T(r, Q)} /dr is non-negative. Hence we may 
substitute this last equation in (5) and change the Stieltjes in­
tegral into a Lebesgue integral as we did above for the volume 
average. Thus we have established the theorem. 
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ERRATUM 

In my paper entitled On the summability of a certain class of 
series of Jacobi polynomials (this Bulletin, vol. 41 (1935), pp. 
541-549), the following change should be made; it conforms 
with the last proofs that I had seen. 

Page 544, 8th line from the bottom: read S%1 instead of 5 $ . 
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