
"935-1 CERTAIN CONTINUED FRACTIONS 727 

ON CONTINUED FRACTIONS OF T H E FORM 

1 + K ( M / l ) 

BY H. S. WALL 

1. Introduction. The principal object of this paper is to deter­
mine the region of convergence of the infinite continued fraction 

« b\Z b2z 
(1) l + K(b,z/l) = l+ — + — , ( J „ * 0 ) , 

when bu b2, b3, • • • are real or complex numbers such that for 
some k *z 1 

(2) lim bnk+m = em, (m = 1, 2, 3, • • • , k). 

The results may be stated in terms of the numerators and 
denominators un,\, vn,\ of the nth convergent of the continued 
fraction l+K?=i(av+\z/l), (crnk+m=*<rm), as follows. 

THEOREM 1. Let] us write Gk = Vk-i,ivk-i,2 • • • Vk-i,k and 
LI h = Vk + Uk-i — Vk-i] and let us set 

Z(z) = - ( - s ) W 2 - • • <Tk/H£. 

Let R be an arbitrary bounded closed and connected region of the 
z plane containing the origin on the interior and which contains 
{within or upon the boundary) none of the zeros of the polynomials 
Gk, Hk, nor points z such that Z(z) is a real number ^ —1/4. Then 
(1) converges over R except at certain isolated points pi, p2, - - - , 
pu, and uniformly over the region obtained from R by removing the 
interiors of small circles with centers pi, p2, • • • , p». The limit is 
a non-rational function of z analytic over R except at pi, p2, • • • , 
pu, which are poles. 

The function Z(z) determines a transformation of the z plane 
into the Z plane and Z = Z(z). Except in the case <ri<r2 • • • <Tk 
= 0, the set of points in the z plane such that Z is real and 

| We write Un^ — Un, and vn,o=tfn. 
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^ —1/4 is a portion of a curve Ck to which corresponds under 
the transformation the real Z segment (— oo , —1/4). The curve 
Ck is a stelloidf or HolzmüllerJ hyperbola in the plane of 1/z. 
In particular, G is a straight line, and C% a circle in the plane of z. 

In §2 we prove Theorem 1 ; §3 contains a discussion of the 
curves Ck', and §4 contains examples and a discussion of the 
power series which corresponds to (1). 

2. Proof of Theorem 1. If Nn{z)/Dn{z) is the nth convergent 
of (1), there are k continued fractions 

Km = Z„ + K (Zr /1) , (» = 1, 2, • • • , * ) , 

with convergents N,k+m-i/D, k+m—li 0 = 0, 1, 2, 3, • • • ), and § 

m i V « - i , f l 
Zo = — ) 

o) z: = 

^ n — 

Dm-1,0 

( - l ) ™ - 1 ^ ' ' ' bmZmDk-l,m 
• ; 

^m- l .O^j fc+m-l .O 

— (— Z)kb*b* ' ' ' bk*Dk-l,(n-Z)k+mDk-l,(n-l)k+n 

D2k—l,(n-S)k+mD2k—l,(n—2)k+m 

for w = 3, and where bf = b(n-2)k+m+i and Nn,\/Dn,\ is the wth 
convergent of 

(4) 

By a 

(5) 

1 + 

known theorem 

bi+\z 

~T + 
-II i f 
limZM 

h+\Z 

~T + 

= Z(z) 

uniformly over a region R'', where Z{z) is a continuous function 
having nowhere in R' a real value = —1/4, then there exists an 
index N such that if n = N, the continued fraction K^iÇZf+n/l) 
converges uniformly over R' to an analytic limit Fn(z). Then if 

t Fouret, Comptes Rendus, vol. 106 (1888). 
t Holzmüller, Einführung in die Theorie der isogonalen Verwandschaften, 

1882, p. 170 and p. 203. 
§ Perron, Die Lehre von den Kettenbruchen, 1913, p. 200. 
|| Ibid., p. 285. 
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Nn /Dû is the ^th convergent of Km> the latter will converge 
over R' to the limit 

Ni + FnNi-i 
(6) ; 

Di +FM-! 
provided the denominator in (6) is not = 0 . But if, as we now 
suppose, R' contains the origin on the interior, this is impossible 
because the denominator = 1 when z = 0. Hence Km converges to 
a function which is analytic except for poles, and clearly con­
verges uniformly in the region obtained from R' by removing the 
interiors of small circles having these poles as centers. Also, Km 

converges uniformly in the vicinity of the origin. From this it 
followsf that if R' is connected, and if (2) holds for w = l, 2, 
3, • • • , k uniformly over R', and Z{z) is independent of m, 
then Ki = K2= • • • ^Kk = P(z), where P(z) is the power series 
corresponding to (1), and hence (1) converges after the manner 
of Km to the same value. 

I t remains to be shown that under the hypothesis (2), (5) 
holds over the region R described in the theorem, and that 
Z(z) = — ( — z)k(Ti<T2 - - - <rk/Hk

2. We have, if ôn = nk+rn, 

(7) D2k-i,sn = Dk-i,8n+kDk,ôn + (Nk-i,sn+k — Dk-i,ôn+k)Dk-i,ôn, 

and hence, if Dk-.lt8n+1/Dk-it8n = l + e n = 1/(1+en ' ), 

m - ( - g ) * W 2 * - - • bk* 
Zn ~~ \ \' 

A n - 3 il n—2 

where 
An_3 = Dkt8n-3 +Nk-i,8n-2 — Dk-l,5n-2 + €n-zDk)8n_s , 

A n _ 2 = Dkt8n-2 +iVfc_i,an_1— <t*fc-l,Ôn-1 + €n
/_2(iVA;-l,5n-1— Z^/b-l,5n-i). 

By (2), limw=00 en = limn=00 ê  = 0, limn=00 Nkt8n=uktmi limw=!00 Dk,8n 

= vk,m uniformly over R. Also 

Vk,m + Uk-l,m ~" Vk-i,m = Vk + Uk-\ — Vk-\ = Hk, 

for all m ^ 1. I t now follows that over the region R 

Hm ZIT = — (— s)*<ri<r2 • • • <r*/ffTO
2 , (w = 1, 2, • • • ,fe), 

uniformly, as was to be proved. 
t Ibid., p. 342, The argument used there applies with slight modification to 

Km» 
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In case o ^ • • • cr& = 0, it is clear that Z ( s )=0 , and there­
fore can never be real and ^ —1/4. In this case (5) holds uni­
formly over every bounded region from which the neighbor­
hoods of the zeros of Gk, Hk have been excluded. I t may happen 
that these neighborhoods need not be excluded. More generally, 
even if (2) fails to hold, we have the following theorem. 

THEOREM 2. If for some integer k^l the functions Z™, (m = l, 
2, • • • , k), defined in (3) converge uniformly to Ofor n= oo over 
every bounded region, then the continued fraction (1) represents a 
metomorphic function of z and converges except at the poles of that 
function. 

When k = 1 this reduces to the condition f Hm bn = Q found by 
E. B. Van Vleck. In §4 we shall give examples illustrating this 
theorem in the cases k = 3, 4. 

3. Discussion of the Curves Ck- Put />=( — l)Vi(r2 •••<?*, 
and let p5*0. By Ck we shall understand the set of points in the 
z plane which is the image of the real Z segment ( — 1/4, — oo) 
under the transformation 

Z = - pzk/Hjf . 

Then Ck is a portion of a curve Ck which is the image of the 
negative half of the real Z axis under this transformation, and 
is a cut for the function represented by (1). 

If (2) holds, then 

(8) lim bnq+m = a J , (m = 1, 2, 3, • • • , q), 

where q = 2k and o'm+k=o'J =o-m. If we had started with the 
hypothesis (8), then instead of the function Z(z) we would have 
Z'(z) = -p2z«/Hi; and 

(9) Gq=Gk2Hk«, 

(10) Hq = Hi - 2pz\ 

<"> r« " - (TTlW 
In fact, if we let w=oo in (7), we obtain the relation vq-itm 

= Vk-i,mHk, from which (9) follows at once. From three rela­
tions analogous to (7) we obtain the identities 

t Ibid., p. 345. 
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Vq = V£ + Vk-l(Uk — Vk), Vq-i = VkVk-1 + Vk-l(uk-l — Vfe-l), 

Uq-i = UkVk-l + Uk-i(Uk-i — Vk-l) , 

and consequently Hq = Hi + 2 (ukVk-i — Uk-iVk) = Hi — 2pzk, 
which is (10). Finally, on eliminating — pzk between the rela­
tions 

r pzk l 2 

Z = - pzk/Hi , Z' = , 
F L {Hi ~ ipz») J 

we obtain (11). 
It follows from (11) that Ck is the same as Cq' ; and from (9) 

we see that the zeros of Gq are those of GkHk. When p^O, the 
zeros of Hk and of Hq lie on the cut; and when p = 0, the zeros of 
Hq are the same as those of Hk by (10). Hence when k is odd in 
(2) we may turn to (8) instead and obtain precisely the same 
region of convergence of the continued fraction (1). There is no 
loss in generality in assuming k even in (2). 

In order to identify the curves Ck and determine Ck it will 
be convenient to replace z by \/z' and study the corresponding 
curve Ek in the plane of z' = l/z, and the portion El of Ek 

which corresponds to Ck . If, as we now suppose, k is even, say 
= 2g, then Hk is a polynomial of degree a of the form 1 + ^\A vz

v. 
We find that 

)—il— = a'<i + Axz'*-i + • • • + Aq. 
[Z{z)]^ 

As Z(z) ranges through real values ^ 0, l/(Z(z))1/2 ranges through 
pure imaginary values, z' over Ek, and z over CV As Z(z) ranges 
through real values from —1/4 to — oo, l / (Z(s ) ) 1 / 2 ranges 
through pure imaginary values from — 2i to + 2iy z' over E&, 
and z over Ci. Set 

G 
p112 = — ei<f>> Av = a9e

iar, z' = reid, 
2 

z'* + AlZ'«-1 + • • • + Aq = X + iY, 

where </> is any one of the possible arguments of p112; G, av are 
real and positive, and av, 0, r, X, F are real. We have 
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X = ^ avyq~v cos (a, + q — vB), 

Q 

F = X) ^ r 9 - " s i n («> + q - ?0), 

(a0 = l, a 0 = 0). Let / be real. Then Ek is given parametrically 
by the equations 

X = t cos </>, F = / sin </>. 

On eliminating t we find that Ek is the stelloid or Holzmüller 
hyperbola 

(12) X s in0 - Fcostf> = 0, 

and that .£& is that part of Eh for which 

(13) X2 + F2 ^ G 2 . 

If g = l (& = 2), £ 2 is a straight line, and (13) is the interior 
of a circle with center on £2 . The curve Ci is an arc of a circle, 
and J34 is a rectangular hyperbola. In case q = 2, C4 and C4' can 
be determined by the following special method. First determine 
81, d2 by the conditions 

A\ s o-i + <r2 + c3 + 0-4 = 2(ôi + 82), 
(14) 

A2 = 0-1(73 + C2ÖT4 = W + Ô2
2 , 

so that 

4 i + ( - 1 ) " ( & 4 2 - 4 £ ) 1 / 8 

5, = ; (^=1,2), 8M2 =-4i2 - 4 4 2 . 
4 

If oiS2 = 0, then ^4x
2 — 4^42 = 0. Hence if either A1 or ^42 is zero, 

the other is also. If SI52T^O, put 

ö"lö'2Ö"3Ör4 

A = 

Z1 = 

(ôiô2)2 

[l + 2(Ô! + 5 2 ) S +(ôi 2 +o 2
2 )0 2 ] 2 

Then Z=AZ±. The function Zi is of the form of Z ' in (11) (for 
the case k = 4), so that 

Zi = - 1/(2 + 1/Z2)
2, 
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where Z2= -ô1ô2z
2/(l+51z + ô2z)2. When 5 iS 2 =^i = ^ 2 = 0, it is 

easy to see tha t Z = —•0*10*20*30'4s4; and when ôi52^0, AiA2^0, 
Z = —aia2os<TAZ4/A2

2(z + 2/Ai)i. We find that there are four cases. 
CASE 1. ôi52=^4i = ^42 = 0. The curve CI consists of four rays 

running from zn to <*> in the direction from 0 to zn, where zn, 
(» = 1, 2, 3, 4), are the four fourth roots of 1/(40*10̂ 0*30-4). In this 
case 0*1̂ 0*3 or else o"27̂ o"4, so that the case k = 2 is not included. 

CASE 2. ôiô2 = 0, AxA2^0. In the plane of z/(z + 2/Ai) the 
cut consists of four rays as in Case 1 except that the four 
fourth roots of A22/(4orlO^o^) are the initial points of the rays. 
In the plane of z the cut consists of arcs of two circles. Here 
0-1^0-3 or o"2^o-4. 

CASE 3. ôiô2^0, 5i + o2=,4i/2 = 0. In the plane of z2 the cut 
is an arc of a circle. We may have 0*1 = 0*3, 0̂  = 0*4 if and only if 
(Ti= — (T2. Thus (2) may hold with k = 2. The cut consists of two 
rays running to <*> in this degenerate case. 

CASE 4. ôiS2-^0, SI + Ô 2 ^ 0 . We may set S I + 52 = 28, and apply 
(11) (for the case k = 2) to the function Z2S2/(Sio2). We find 
that in the plane of (2 + l/(Ss))2 the cut is an arc of a circle. If 
o"i = o-3, o-2 = o-4, (JIT^ — o"2, (2) holds with k = 2, and the cut is an 
arc of a circle in the plane of z. If o*i = a2 = o*3 = o*4, (2) holds with 
k = 1 and the cut is the ray running from — l/(4o*i) to <*> in the 
direction from 0 to — l/(4o*i). 

If the an are real and positive it is easy to show that SIS2F^0, 

SI + 5 2 7^0 , so that Case 4 obtains. In this important case one 
may show that the cut is a portion of the negative half of the 
real z axis. The polynomial G4 is 

(1 + (XiZ + <T2z){\ + a2Z + <TzZ)(l + (TZZ + 0-42f)(l + (TAZ + <JiZ) . 

4. Examples and Applications, The following examples have 
been selected for the purpose of bringing out interesting points 
which might otherwise be overlooked. 

EXAMPLE 1. Let hn^2 = cn9
£01 lim cn = 0, hn+2= —b3n = a9£0. 

Here we have, with k = 3, 

zza2cn 
Zi = , 

(1 + Cn-iZ)(l + Cnz) 

_ __ zza2cn{\ + cn-iz){\. + cn+ïz) 

[l + (Cn + Cn-l)z] [l + (Cn + Cn+i)z] 
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zza2cn 

(1 + Cnz){\ + Cn+1z) 

Since limri=oo^ = 0, (m = 1, 2, 3), uniformly over every bounded 
region, the continued fraction represents a meromorphic func­
tion of z by Theorem 2. 

EXAMPLE 2. Let &4n+i = —i4n+2s=^»>0, lim £w = 0, &4n= — &4n-i 
= a > 0 . If &i = l / a i , 6n = l / (a n - ia„) , ( » ^ 2 ) , then a 2 n+i>0. Since 

2^a2n+i diverges, it follows from the work of Hamburgerf that 
the continued fraction converges except upon the real axis. To 
prove that it represents a meromorphic function^ it is but 
necessary to note§ that when k = 4 

24a2cw_icn_2 
Zn1 = > 

(1 - acn-2z
2)(l - acn-iz2) 

so that lim Z» = 0 uniformly over every bounded region, and 
therefore K\ represents a meromorphic function. 

EXAMPLE 3. If lim sup | bn \ <g, limn=co bnbn+i = 0, we may show 
that (1) represents a function which is analytic except for 
poles in the region|| \z\ ^ l / ( 2 g ) . In fact, if k = 2, limn=oo^ 
= 0, (ra = l, 2), uniformly over this region inasmuch as the 
polynomials DZt2n+m = 1 + (62 + b2n+m+z)z have no zeros in 
this region if n is sufficiently large; and limn=00 &i b2 = 0. 

EXAMPLE 4. According to Theorem 1, the real segment (1, °°) 
is to be excluded from the region of convergence of the contin­
ued fraction (1) if the b's have the values bi = 1/2, b2^ —1/2, 
b2n = - 1 / ( 2 ( 1 + [ n - l ] * / » ' ) ) , W i = - l / ( 2 ( l + h + l]V?*p)). 
One may show tha t this continued fraction converges or di­
verges at z = 1 (a point on this segment) according as p is > 1 
or ^ 1. In fact, when 2 = 1, the ^th convergent is 

t Mathematische Annalen, vol. 82, pp. 120-187. 
t See this Bulletin, vol. 39 (1933), pp. 946-952, in which another example 

is given to show tha t (1) may represent a meromorphic function when the bn 

are real and &2n&2n+i>0, lim sup | ôw | > 0 . In that example convergence was 
established except at the poles of the function, whereas here the question of 
convergence at points on the real axis is not considered. 

§ The other Z«w, (w = 2, 3, 4), are not all so simple in character. 
II If the condition lim bnbn+i=0 is dropped, the same holds in the region 

\z\ ^ l / ( 4 g ) (see Perron, loc. cit., p. 343). 
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1 1 

+ —+ ••• + 1* 2*> [n/2]*> 

when n is even and 

1 1 1 
• + — + • • • + T7 7T1-T + 

1 ' 2*> [ ( » - l ) / 2 ] * 2 [ ( » - 1 ) / 2 ] P 

when w is odd. 
As is well known, (1) has a unique corresponding power series 

P(z) =1LJCVZV> (£O = 1 ) , from which (1) may be obtained by a 
repeated division process. If a given power series P(z) has a 
corresponding continued fraction of the form (1), it is said to be 
semi-normal. ^ When convergent, the continued fraction 
furnishes a method for summing the power series. Let P'(z) 
=y^Ü-oCi+y£y be semi-normal with corresponding continued 
fraction C\-\-K(bl z/\). Then if (1) converges to ƒ(z) when (1) 
corresponds to P(z), it is important to know conditions under 
which ci+K(biz/l) converges to the value (J(z) — l)/z. 

I t is well known tha t if (1) converges to f(z), then when 
Ci+K(blz/\) converges it must have the value (f(z) — l)/z. 
This follows from the fact tha t the even convergents of 
1+ciZ+zK(blz/V) are the same as the odd convergents of (1).J 

The numbers bv and b'v are related as follows.§ Set ai = l /6i , 
a{=l/b{, an = l/(6nön-i), fln = l/(4nfln-i), (n>l). Then if 
/*n = ai + a 3 + * * * + #2n+l, 

#2n = ain+l/\hnhn-l) •> #2n+l = #2n+2^n • 

If (2) holds with k even (say = 2q), then it is not difficult to show 
that when the bn are real and 

(15) l im (bnk+m/bnk+m+l) = f m > 0 , (w = 1, 2, 3 , • • • , * ) , 

we must also have 

(16) l im (6n*+m/6nfc+m+l) = f » > 0 , (w = 1, 2 , 3 , • • • , k) , 

t Perron, loc. cit., p. 304. 
t Perron, loc. cit., p. 447. 
§ Transactions of this Society, vol. 31 (1929), pp. 102-103. 
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and 

(17) lîm bnk+m = <rm, (m = 1, 2, 3, • • • , k). 
W=oo 

Hence if Theorem 1 is applicable to the continued fraction cor­
responding to P(z) it is also applicable to the continued fraction 
corresponding to P'(z) provided P{z) has real coefficients and 
(15) holds. From (16), (17) it then follows at once that Theorem 
1 can be in turn applied to the continued fraction corresponding 
to P"{z) =22^1oc2+^v, provided the latter is semi-normal, etc. 
I t is easy to conclude from the fact that two successive con­
tinued fractions obtained in this way have an infinite number of 
convergents in common that the function Z(z) of Theorem 1 is 
the same for all these continued fractions. We shall summarize 
the result in the following theorem. 

THEOREM 3. If P(z) = l+ciZ+c2z
2+ • • • is a semi-normal 

power series with real coefficients and corresponding continued 
fraction (1) such that for k = 2q equations (2) and (15) hold, and 
if L = ci+K(bp z/1) is the corresponding continued fraction for 
Pf{z) =ci+c2z+csz2+ • • • (supposed semi-normal), then (1) and 
1+zL converge to one and the same function f(z) over the region 
R described in Theorem 1. If P^n)(z) = ^2^0cn+vz

v is semi-
normal ivith corresponding continued fraction cn+K(bln)z/l), 
{n — \, 2, 3, - - • , r), then all the continued fractions l+ciz 
+ • • • +cnz

n+znK(bln)z/l), (n = \, 2, 3, • • • , r), converge 
over R to f(z). 

The continued fractions are precisely the continued fractions 
of "type 1" of a Padé table, f whose convergents are "stair-
like" files of approximants beginning upon the horizontal side 
of the table. One can show that when E(z), the reciprocal of 
P(z)y and the series E{n)(z) obtained by removing from E(z) 
the first n terms and the factor zn, (n = l, 2, 3, • • • ), are semi-
normal, then under the hypothesis of Theorem 3 the continued 
fractions corresponding to stairlike files of approximants be­
ginning on the vertical side of the table also converge over R 
tO ƒ (2). 

NORTHWESTERN UNIVERSITY 

t Perron, loc. cit., pp. 447-448. 


