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T H E CONSTANTS IN WARING'S PROBLEM 
FOR ODD POWERS 

BY R. D. JAMES 

1. Introduction. In a previous paper* the writer determined 
the constants in the Hardy-Littlewood analysis of Waring's 
problem. It was then possible to obtain new universal theorems. 
The proof depended on the following results. 

THEOREM A. (Theorem 46, page 429, and (C), page 442 in 
paper T.) Let k^ôbean integer ; 5 an integer ;a = l/k; 

d = [log (ft - l ) / log2] ; D = (d + 2)(k - 1) - 2 ^ + 0.1; 

r ( £ - 2 ) l o g 2 - l o g £ + l o g ( £ - 2 ) - | 

* - * + r * - * + L io g * - i o g ( * -"I) J; 

_ D(s - 2) + *2*-2(l + (1 - a)**-2) 
V ~ (s - 2) - (k - 2)2*~2 - k 

Then every integer n>C, where loge C = 20kz2r', is a sum of s+s2 

kth powers. 

The proof of universal theorems was greatly simplified by 
Dickson's new method. Using Theorem A and very short tables 
he proved thatf every integer is a sum of 259 seventh powers, 
575 eighth powers, 981 ninth powers, 10711 twelfth powers, 
All these results are considerably better than those obtained 
by algebraic methods. 

In another paperj the writer obtained new asymptotic re
sults for odd powers. I t is the purpose of the present note to 
point out that the constants of this paper may also be evaluated 
by the methods of paper T. This leads to still better universal 

* Transactions of this Society, vol. 36 (1934), pp. 395-444. This will be re
ferred to as paper T. 

t This Bulletin, vol. 39 (1933), Theorems 15-18, pp. 713-714. 
% Proceedings of the London Mathematical Society, (2), vol. 37 (1934), 

pp. 257-291. This will be referred to as paper P. 
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theorems for odd powers. Corresponding to Theorem A we have 
the following theorem. 

THEOREM B. Let k^7 be an odd integer; tSk2h~2 an integer; 
o = l / * ; 6 = l / ( * - l ) ; 

da = [log ( * - l ) / l o g 2]; db = [log (*-2) / log 2]; 

Da=(da+2)(k-l)-2d°+1+0.1; Db=(db+2)(k-2)-2db+l+0.1; 

S2 = 4+f&, where £*. w<w defined in Theorem A; 

_Z^ a (2^ - l ) (^ - - l )+Z)6^(2 / -4 ) + 2 ^ 2 ^ ( ^ ~ l ) ( l + (l--a)^-2) 
17 ~" ( 2 ^ - l ) ( ^ ~ l ) + ^ ( 2 / - 4 ) - 2 A ; - 2 ^ ( ^ - 3 ) - ^ ( ^ - l ) 

v = é when k is divisible by 15, v = 2 in all other cases. Then every 
integer n>C', where logeC' = 25kz2v, is a sum of 2t+s2+2v 
+ 2& — 1 kth powers. 

The use of this theorem instead of Theorem A enabled Dick
son* to prove that every integer is a sum of 4425 eleventh 
powers. The Hardy-Littlewood result showed only that every 
sufficiently large integer was a sum of 4687 eleventh powers. 

2. Changes Required for CW In order to obtain Theorem B 
there is one change which must be made in paper P. The con
stant C99 which occurs in the proof of Theorem 3 (page 289) 
is evaluated in precisely the same way as the constant C in paper 
T, and we shall not repeat the discussion. However, in Lemma 
33 (page 290) the constant Goo depends on a prime number 
theory constant which has not been evaluated. Accordingly we 
replace Lemma 33 by the following lemma. 

LEMMA A. Define k, t, and v as in Theorem B. Let 
p = 3 when k is prime to 6, 
p = S when k is divisible by 3 and prime to 10, 
p = 2 in all other cases. 

Then given any integer w>p^k+6)k2 there exist 2v kth powers 
wiyW2f • • • , W2v and integers fx^ 2 and W such that 

(1) w - 2tp(k+2+»)k2 - ^2 wk = pi*+*+rt*w> 

* Journal of the London Mathematical Society, vol. 9 (1934), pp. 201-
206. 
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where 

(2* — 4)p(k+2+n)(k2-k) <: JY ^ (2k — 2)p(k+2+fiHk2~k). 

The integer W satisfies the inequalities (8-32), for the value 
jV = ƒ><*+*+/«>*, on page 288 of.paper P. For by (2-31), page 258, 
we have 

2t{P{M) + 1) + Nk~l S 2t(P(BN) + 1) + N"-1 

= 2*{(1 + B)k+ (1 - B)k - 2}Nk~1 + 2t + Nk~' 

< (2k - ó ) ^ - 1 + 2t + Nk~l < (2k - A)Nk~\ 

since we have 2t ^k2k <22k <p(k+2^Hk2~k) =Nk~K 

3. Evaluation of C'. We shall now prove Lemma A and then 
show that the constant C' in Theorem B is equal to 

(2) vp(M)k2
 + (2/ + 2*)(2* - 4 ) - ^ * * c i / ( W ) . 

Knowing loge C99 (evaluated by the methods of paper T) we 
can therefore find loge C'. The result is logeC"<25&32*. 

To prove Lemma A, we require two additional lemmas. 

LEMMA B. Let m ( ^ l ) and E be integers; P ^ O , Q^O, and 
P+(m — l)k^E^Q. Then there exist at least m consecutive in
tegers ifi ^ 0, (/? = 1, 2, • • •, m)y which satisfy the inequalities 

(3) P ^ E - if ^ P+krnQV°-»'k. 

PROOF. Let Ô = (E-P)lik. Then [ ô ] ^ m - l , a n d we have 

P = E - ö k ^ E - [ö]k S E - ([«] -m+l)k 

= P + Ôk- ([5] - m+ l)k S P+ k(ô- [ô]+m- l)^*-1 

S P + kmÔ^1 = P + km(E - P)<*-D/* 

S P + fonQ^1»*. 

The integers [ô]— tn + 1, [ô]—rn + 2, • • • , [ô] are ail ^ 0 and 
satisfy the inequalities (3). 

LEMMA C. Define v and p as before. Let e^2 and F be integers; 
P^0,Q^0and 

(4) P + vpek S F S Q. 

Then there exist integers hi, fe, • • • , hv, and W such that 
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F = E w + p'w, 
a = l 

P^>-« ^ W ^ P^~« + kQ(k-»ik. 

PROOF. I t is known* that there is a solution of the congruence 
V 

F s ]T hi (mod ^e) 

for v and £ as defined. Hence there is an integer IF such that 

(5) F = E *«* + #W. 

For a = l, 2, • • • , i/ —1 we choose ha so that 0Sha<pe. Then 
from (4), (5) we have P+pekSF-J2az\ ha £Q. In Lemma B 
with m = pe,E = F—^2v

az\ hh
ai one of the pe consecutive integers i$ 

must be congruent to hv modulo pe, and we take hv equal to 
this particular ip. I t follows from Lemma B that 

V 

F ^F - ] £ * « * ^ P + kpeQ^k~l^k, 
a = l 

and then from (5) that 

Pp~* SW S Pp~e + kQ<k-»'k. 

The proof of Lemma A now proceeds as follows : Let 

(6) QUO == (It + 2k)p<k+*+^k2 + vp<k+Vk\ 

Since w>p^k+%)k2 and 2t^k2k, we have 

w > p(k+é)k2.p2k2
 > (k2k + 2k)p<k+vk2 + 4/>(*+2>*2 

è (2/ + 2*)^</H-4)*2 + i# <*+*>*' = Q(2). 

Thus for every integer w>pik+s)k2 there is an integer ju^ 2 such 
that 

(7) Qfa) £w<QQi+l). 

* See E. Landau, Vorlesungen iiber Zahlentheorie, vol. 1,1927, Theorems 291 
and 301. 
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Now 

Q(ji + 1) - 2tp^k+2+^k2 = (2t + 2k)p(k+z+^k* + vp(k+2)k 

- 2tp^k+2+^k < (2t + 2k)p(k+z+^k2 

<; (k2k + 2k)p(k+z+tl)k2 < (2/k)k/(k-1)pk^k+1)^k+2)+fJLk2. 

Hence we have 

Q(ix) - 2tp(k+2+^k2 ^ w - 2tp(k+2+^k2 

<Q(»+l)-2tp<k+2+^k2, 

2kp(k+2+n)k2 _|_ vp(k+2)k2 <g w __ 2tp(k+2+^k2 

< (2/k)k/^k-1)pk(k+1^k+2)+fik2. 

AsintheproofofLemmaC,wi th^==w--2^^ + 2 +^ / k 2 , e = (^ + 2)yfe, 
there is a solution of 

w - 2tp(k+2+^k2 s 2 w«* (mod #c*+2>*), 
a = l 

withO ^ wa < p(k+2>>k. Hence 

(9) w - 2tp<k+2+^k2 = S w H p<k+vkH, 
a = l 

where from (8) we have 

2kp(k+2+n)k2 <; p(k+2)kfl[ < (2/jfc)*/(*-l)^MH-l)(AH-2)+/**2 

2kp(k+2)(k2-k)+fik2 g # < (2/£)fc/(fc-l)£(fc+2+M)&2
# 

Since 

2kp(k+2){k2-k)+nk2 > (2* — 4)/>(*H-2) (k2-k)+nk2 _|_ flTjMfc2 

this gives 

(2fc — 4)̂ (*+2)(fc2-fc)+M/b2 -|_ ^M*2 <^ H < (2/k)k,^k-1)p(k+2+ii)k2. 

Next, by Lemma C, with F = H, e=\xk, 

p = (2* — 4)^ (*H-2) (& 2 -*O+M* 2
> Q = (2/^)^/(fc-i)^(ft+2+M)fc2 

there exist integers Ai, A2, • • • , A*, and PFsuch that 
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(10) fî=EW +PhW, 

where 

(2k — 4)̂ (*+2+M)(ft2-ft) <g W ^ (2k — 4)̂ >(̂ +2+M)(A;2-fc) 

(11) + k(2/k)p<k+2+»^k2-k\ 

(2k — 4)^>(*+2+M) (&*-&) ^ pr/ ^ (2* — 2)p(k+2+tiHk2~~k). 

Hence from (9) and (10) we obtain 

w - 2tp<k+2+^k* -J2wk-J^ (pk+2ha)
k = ^cw-»**)*1^, 

where W satisfies the inequalities (11). This proves Lemma A. 

I t remains to show how the constant C' of Theorem B is ob
tained. Proceeding as in §9 of paper P with s = 2k — l, $i = 4+f;b 
= s2, but using Lemma A instead of Lemma 33, we prove that 
w is a sum of 

(2t + s2 + 2v + 2k - 1) 

&th powers, provided that W> C99. We shall have W> C99 if M is 
chosen so that 

(2k-4)p^2^k2>cti(k~1) . 
From (6), (7) this inequality holds if 

w > ^(H-2)*2
 + (2/ + 2*)(2* - 4)-^fc2C99(fc~1) , 

which proves (2). 
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