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T H E RELATIVE CONNECTIVITIES OF 
S Y M M E T R I C PRODUCTS* 

BY MOSES RICHARDSON 

1. Introduction. The topology of the domain of discontinuity 
of a finite group of transformations operating on a complex, and, 
in particular, the topology of symmetric product complexes, has 
been studied by P. A. Smith f and the author. % Following a sug­
gestion made by Morse,§ we obtain in this note explicit formu­
las for the so-called relative connectivities of the symmetric 
product of a complex in terms of its mod 2 Betti numbers, and 
we discuss an application of this result to the theory of critical 
chords. First, however, we derive a more general result of which 
the formulas for the relative connectivities of symmetric prod­
ucts is a special case. The methods used here follow closely 
those of S. 

2. Definitions and Preliminary Theorems. For proofs or fuller 
discussion of statements made in this section, the reader is re­
ferred to S or R. 

Let I b e a simplicial w-complex.|| Let T be a topological 
involution such that (a) T carries ra-simplexes of K into m-
simplexes of K; (b) if a simplex of K is invariant, it is pointwise 
invariant. 

The invariant simplexes of K form a subcomplex K°, and 
the non-invariant simplexes can be grouped in pairs so that each 
member of a pair is transformed into the other member by T. 
Thus the m-simplexes of K can be renamed E J , E J , Em

0j', where 
E J = TE J , and Em°' is a simplex of K°. If H C = UEJ is a chain of 

* Presented to the Society, February 23, 1935. 
t P. A. Smith, The topology of involutions, Proceedings of the National 

Academy of Sciences, (1933), pp. 612-618. (Denoted hereafter by S.) 
t M. Richardson, On the homology characters of symmetric products, Duke 

Mathematical Journal, vol. 1 (1935), pp. 50-69. (Denoted hereafter by R.) 
§ M. Morse, The Calculus of Variations in the Large, Colloquium Publica­

tions of this Society, vol. 18, 1934, p. 191. (Denoted hereafter by M.) 
|| Our general topological terminology and notation is that of S. Lefschetz, 

Topology, Colloquium Publications of this Society, vol. 12, 1930. 
U A repeated index indicates summation. 
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K, we define TC to be the chain C = tiËJ. The involution T pre­
serves bounding relations, f 

We consider only mod 2 topology; all homologies and equa­
tions are understood to be homologies and congruences mod 2. 

A chain X of K is called invariant if X = X. In particular, 
if every simplex occurring in a chain with a non-zero coefficient 
belongs to K°, we attach a zero to the chain-symbol, as X°. 
If no simplex of K° occurs in a chain with a non-zero coefficient, 
we attach an asterisk to the chain-symbol, as X*. Every in­
variant chain can be written in the form X* + X*+X°. If an 
invariant cycle T is the boundary of an invariant chain, we 
write r ^ O . These special homologies obey the same formal rules 
as ordinary homologies. 

We choose a base for homology of type T\ T% D1 for each 
dimension. J We consider only the case in which (A) Dm

j +DJ 
=0 for every m>0 and every j . In this case we can and do re­
place the DJ in the base by invariant cycles§ *Am. 

We now construct the sequences 

(1) Am, Aw_i, • • • , A r , {r = r(tn, %) è - 1), 

where iAq
m=iXq

m+iXq
m

} and F({Xq
m) = *A™_i, (for q = m, m - 1 , 

• • • , r + 1), and ^^XT+^+'X0^, (for r ^O) , where the 
{X?m are cycles.|| We consider only the case where (B) the cycles 
iX?m are independent with respect to homologies on K°. We 
shall need the following lemmas.^ 
(2) If C + C + C ° ^ 0 , then C°~0 on K°. 
(3) The cycles Tj +r<?, *Aa

m, (q > 0 ) , are independent with respect 
to^. 

(4) If (A) and (B) hold, every cycle of the form CQ + Cq, (<z>0), 
is — to a linear combination of cycles T} +T} , *Ag

M, 
With the simplexes E J and ~Ej we associate t a simplex e J , 

and we write /\EJ = /\EJ =ej. If C~hEJ, we define AC to 
be the chain c = he J. The totality of simplexes e J constitutes 

t R, §1. 
i s, §1. 
§ S, p. 614. 
|| S, p. 614. 
If S, pp. 613-615. 
t The material in this paragraph is fully discussed in R, §2. 
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an ^-complex k= /\K, say. In particular, the simplexes em°* 
= A-E»?* constitute a subcomplex k°= AK°, say. If e= AE is a 
simplex of &, we write A'e — E + E. If c = tiej, we define /\'c to be 
the chain ti A'eJ - Both A and A ' preserve bounding relations. 
We shall use large or small letters for chains of K or k, respec­
tively. In particular, a symbol like x° will denote a chain of k°, 
and a symbol like x* will denote a chain in which no cell of k° 
occurs with a non-zero coefficient. 

3. The Topology of k mod k°. We shall now determine the Betti 
numbers Rq(k; k°, 2). A chain whose boundary is a chain of k°, 
that is, a cycle mod k°> shall be called a relative cycle. 

(5) /ƒ c-\-x°—»0, tf/^n c is a relative cycle. 

PROOF. Let F(c) =;y*+;y0 and F(x°)=3°. Since F(c+x°) 
= y*+y0+z0 = 0, we have 3>* = 0. Hence c—>0 mod &°. 

(6) /ƒ c+x°~0, then c~0 mod jfe°. 

PROOF. There exists a chain d such that d—>c+x°. Thus 
d—>c mod &°. 

(7) If y is a relative cycle, then A ' Y is a cycle. 

PROOF. Since y-^x°, we have A'7-> A'*0 = X ° + I ° = 2X° = 0. 

(8) If y~0 mod k°, then A ' 7 = 0 . 

PROOF. Since there exists a chain c such that c—>Y+X°, we 
have A7£-> A ; 7 + A7*0. But A'*° = 0. I t is obvious that A's 
and A ' Y are invariant. 

(9) If cis a relative cycle, we can write A'c in the form C+C where 
AC = c. 

PROOF. Let c = UeJ +uier£
i. We have only to let C = UEJ 

+ UiEm
0i. 

(10) If C + C = 0 , then ACis a relative cycle and AC—0 mod k°. 

PROOF. J y hypothesis, H+H->C+C. Let F(H) = C+X. 
Then X + X = 0. Hence X = X* + X * + X ° . Therefore, 

A # -> AC + AX = AC + 2 AX* + A* 0 = AC + AX°. 

Thus A C + A^0—>0, and by (5), AC is a relative cycle. Since 
A-tf-> A C + A ^ ° ~ 0 , we have AC—0 mod jfe°, by (6). 
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(11) For q^r{m, f) + l, A{lXq
m) is a relative cycle, say *£e

w, and 

PROOF. If q^r(m, i ) + 2 , then, since « X ^ - V A ^ - I , we have 

,i m^ ,i m „ ,t m i—m 

A( X , ) -> A( A,_i) = A( Xr-x + I g - i ) = 0. 

Therefore, A(*Xqm) = {%q
m is an absolute cycle. If q = r(m, i) + l , 

we have 

A(Xt)-+ A( A„_i) = A( Xr + Xr + Xr ) 

= A( X r ) = 0 mod & . 

Thus, in this case, *£<™= A(^<T) is a relative cycle. In either 
case we have A'(*ê<T) = iXq

m+ {~Xq
m = 'Af. 

Let 7a* = A l V . 

(12) The relative cycles yj, *£a
m, (q^r(m, f) + l > 0 ) , are inde-

pendent with respect to homology mod &°. 

PROOF. Suppose there were a non-trivial homology 
i m i 0 

ooim %q + ;y;7<* ~ 0 mod & . 

By (8) we have A^xJ ^q
m+yiyq

i)^0. Thus, by (11), 
i m i n' 

ximAq +yiÇTq + Tq)£Ê:0, 
contradicting (3). 
(13) Every relative q-cycle of k is homologous mod k° to a linear 
combination of the yj and i^q

m
1 (q^r(m,i)-\-l>0). 

PROOF. Let y be an arbitrary relative g-cycle of k. Let 
A r7 = r + r , where A r = 7 , by (9). By (7), A'7 is a cycle. 

Therefore, by (4), 

(14) r + r SE ^(r', + jft) + yjA
m

q. 
Now we shall show that yim = 0 whenever r{m, i)=q. For, if 
some yim^O, then (14) would be of the form 

Y + 7 + zim(Xm
t +X +iX°q

m) ^0, 

where some Zim9^0. This implies that S im 'X^^O on K°, by (2). 
But this contradicts (B). Thus, (14) has the form 

r + r + XiÇr'i + tq) + yim(xm
q + {xm

q) s o, 
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whereq^ r (w , i ) + 1 . Le tC = T+XiT{ +yim
iX™. Then C + C ^ O , 

and, by (10), we have A C ^ O mod &°, or 
i i m 0 

7 + %i7q + y%m £ff ~ 0 ttiod ft . 

This proves the theorem. 
By (12) and (13), the relative cycles *£Q

m, yf, (q^r(m, i) + l 
> 0 ) , constitute a base for relative g-cycles of k with respect to 
homology mod k°. Let R^ be the number of cycles i y , and let 
Çg be the number of g-cycles *Ajn satisfying the relation 
r(m, i) + l Hkq. We have proved the following theorem. 

THEOREM 1. If the hypotheses (a), (b), (A), and (B) are fulfilled, 
thenRq(k;k\ 2) = Rç+Qqi(q>Q)-

4. Symmetric Products. Let K.2n = KnXKn be the complex K 
of the preceding sections. Let T be the involution which inter­
changes the points PXQ and QXP of X2n. A simplicial sub­
division of K^n satisfying (a) and (b) of §2 can be found.f Of 
course, A^2n = &2n is the 2-fold symmetric product of Kn. We 
can choose bases for homology on K^n of the I \ T, 'A type here 
required.} The cycles *Ae occur only in even dimensions. I t has 
been shown that the sequences (1) can be constructed so that 
r(2h, i)=h for all i, and so that (A) and (B) are fulfilled.! There­
fore we may apply Theorem 1. 

Now let R%$ = Rs(Kn, 2) for s^n and JR^ = 0 for s>n. Then 
it is easily seen that Qi = 0 and 

A A A 

Qq = R%t + Rut+i) + • • • + -&2(<*-i), (q > 1), 

where t=[(q + l)/2], since the lowest dimension 2m to yield 
cycles *Aff

2m is either 2m —q or 2m = q + l. Thus by Theorem 1, 
we have the following result. 

THEOREM 2. For the symmetric product &2» of Kn we have 
o r 

Ri(k%n', kn, 2) = R\ 
o r A A A 

Rq{k%n) kn, 2) = Rq + R2t + R2(t+1) + * * • + i?2(<ï-l>, (<Z > 1), 
where t= [(g + l ) / 2 ] , awd w^ere 

t R, §5. 
% R, p. 57. 
§ R, pp. 64-65. 



1935-3 CONNECTIVITIES OF SYMMETRIC PRODUCTS 533 

r 1 A-, 
RQ = —[Rq(K%i, 2) — Rq\ 

if q is even, and 
r 1 

Rq = Rq(K2n, 2) 

if q is odd. 

Of course, if Kn is connected, so is &2nî hence J£o(&2wî few°, 2) = 0 
in this case. The numbers Rq{k2n\ W , 2) have been called rela­
tive connectivities by Morse,f who proved that they are finite. J 
This result is of course implied by our formulas. 

EXAMPLE 1. Let Kn be an ^-sphere. Then JR£ = JR2^ = 1> while 
all the other RT's and i£A's, are zero. From our formulas, we 
obtain for the relative connectivities of k2n, 

RQ = Ri = • • • = Rn-i = 0, 
r 

Rn = Rn = 1, 
A A 

Rn+1 = Rïiq-1) = R%n = 1 , 
A A 

Rn+2 = ^2(3-2) = R%n = 1 , 

Rln — R%t = R%n — 1 . 

The values of the relative connectivities for this example were 
worked out by Morse§ by special methods involving the critical 
chords of an ^-ellipsoid. 

EXAMPLE 2. Let Kn be an orientable surface of genus p. Then 
the relative connectivities of the symmetric product k2n are 
i?o = 0, Ui = 2£, R2 = 2p2+p + ly Rz = 2p + ly #4 = 1. 

5. Application to the Theory of Critical Chords.\\ The chief re­
sults concerning critical chords are as follows. Let R be a regu­
lar, analytic Riemannian ^-manifold lying in a euclidean (w + 1)-
space, such that R is homeomorphic to a simplicial ^-complex 
Kn, Then the symmetric product of R is evidently homeo-

t M , p . 182. 
J M, pp. 182-183. 
§ M , Theorem 11.3, p . 191. 
|| For definitions and proofs required in this section see M, pp. 181-191. 
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morphic to the symmetric product k2n of Kn. Let Ro, Ri, • • • , 
R2n be the relative connectivities of k2n. Then the sums Mi of 
the type numbers of the critical sets of chords of R and the 
numbers Ri satisfy the relations 

Mo ^ Ro, Mo - Mi S Ro - Ri, Mo- Mi + M2^ R0- Ri + R2, 

Mo - M1 + • • • + ( - l)2nM2n = Ro - Ri + • • • + ( - l ) 2 ^2n. t 

A simple corollary of this theorem is this : If the critical chords 
of R are all non-degenerate, there exist at least Ri such chords of 
index \ i. 

Our Theorem 2 enables us to obtain the values of the relative 
connectivities Ri of k2n when the mod 2 Betti numbers of R are 
known. Thus the above theorem and its corollary can be used 
to obtain numerical information concerning the critical chords 
of any R whose mod 2 Betti numbers are known. This makes 
available a wide class of examples. For instance, the corollary 
of M, p. 191 follows at once from the above corollary and our 
Example 1, §4. 

As a further example, let R be any regular, analytic image of 
an orientable surface of genus p. Then, from Example 2, §4, and 
the above corollary, we obtain the result that, if the extremal 
chords of R are all non-degenerate, then, among these extremal 
chords there must be 2p2 + 5p+3 extremal chords of the follow­
ing description: 2p extremal chords of index 1, 2p2+p+l ex­
tremal chords of index 2, 2p+l extremal chords of index 3, and 
1 extremal chord of index 4. In the degenerate case, the same 
result holds provided each critical set of chords is counted ac­
cording to its type numbers. 

BROOKLYN COLLEGE 

t M, Theorem 11.1, p. 185. 
t M , p . 185. 


