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SOME THEOREMS ON DOUBLE LIMITS*

BY J. D. HILL}

1. Introduction. Let f(x, y) be an arbitrary single-valued real
function of the real variables x, vy defined in the neighborhood of
a point Q(a, b), which for simplicity may be taken as (0, 0). The
following sufficient (and obviously necessary) condition for the
existence of the double limit

(1) ling (=, )
y—0

has been established.

TrEOREM 1 (Clarkson).i If f(x, ¥) has a unique limit as

P(x, y) approaches Q on every curve having a tangent at Q, the
double limit (1) exists.

The present note is concerned with similar theorems, and for
definiteness we state at the outset that the assertion, “f(P) has
a limit A as P—Q on a point set§ E having Q as a limit point
(or limp.q f(P) =N\, on E)” shall mean that for each ¢>0 there
exists a positive 8(e¢, E) such that | P —)\| <e for all points
P of E satisfying the condition 0 < | x| +|y| <6.

Theorem 1 naturally suggests a question which is answered
by Lemma 1, for convenience in the statement of which we
introduce the following definition.

DEFINITION OF PROPERTY L. A class {E} of sets E, each
having Q as a limit point, will be said to have Property L if
and only if any set S whatsoever of points having Q as a limit

* Presented to the Society, April 19, 1935.

t I gratefully acknowledge my indebtedness to Mr. Hugh J. Hamilton for
suggesting Lemma 1, and to Mr. Nelson Dunford for Theorem 5.

1 Clarkson, A sufficient condition for the existence of a double limit, this
Bulletin, vol. 38 (1932), pp. 391-392. A theorem essentially the same has been
proved by Vertenko and Kolmogoroff, Uber Unstetigkeitspunkte von Funktionen
sweier Verdnderlichen, Comptes Rendus, Académie des Sciences, URSS, new
series, vol. 1 (1934), pp. 105-107.

§ In particular, on a curve.
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point has a subset S* which is contained in some one of the
sets E and has Q as a limit point.

LeMMA 1. 4 necessary and sufficient condition that the relation
limp_of(P) =N\ on every set E of a class {E} shall imply the exist-
ence of (1) is that {E} have Property L.

This lemma, whose proof we leave to the reader, provides a
criterion for determining whether or not an analog of Theorem 1
holds for other classes of curves or point sets.

2. The Class of Curves {U}. Let ¢(s)=D naans®, ¥(s)
=Y w_1b,s" be any two real power series with positive radii of
convergence (say) p,, p», respectively, and let p be chosen so
that 0 <p <min (p,, p»). Then the equations

2 x = ¢(s), y = ¥(), (Is] =),

define a curve ¥ through Q. We denote by {2[} the class of all
such curves.

THEOREM 2. The existence of a unique limit for f(P) as P—Q
on every curve of { 21} does not imply the existence of (1).

PROOF. Let us assume the contrary, which implies that {9}
has Property L. We choose S as the set of points on the curve
y=eY+" for x>0, and proceed to show that the definition of
Property L is not satisfied. Suppose that there exists a curve
A* of { QI} and an infinite subset S* of .S of points (&,, 7.)— (0, 0),
such that S* lies on %*. Then if (2) is the representation of A*,
there must exist at least one value of s, say ¢4, for which ¢(g,)
=&, Y(on) =7 (®=1,2,3, - ). Let N be any limit point of
the sequence {o,}, and let {s.} be a subsequence of {¢,} such
that s,—\ as n—o. If {(xs, ¥.)} is the corresponding subset
of {(En, 17,,)}, we have 0<x,=¢(s,)—0, and 0<y,=y¥(s,)—0,
whence by continuity ¢(A\) =¢(\) = 0. Consequently, in view of
the relation l)\l <p<min (p,, ps), (s) and ¥ (s) have expansions
of the form

o)

é(s) = 2 an(s — N7, w =1, 0, #0),
A3) "

Yis) = 2 Bals =N, (= 1,8 #0),

n=y
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for |s -—)\| sufficiently small. Choose an integer m to satisfy the
inequality mu > v, and consider the equation
Y(s.) el
= ’ (n=1,2,3,---),
[¢(S,,) ] " X

which is implied by S* c %{*. Using (3) one sees that the left
side increases without limit as —o0, while the right side tends
to zero. This contradiction completes the proof.

3. The Class of Curves {9,}. Let r be a preassigned real num-
ber, or «, and denote by {I‘, the class of all single-valued func-
tions of z(=s-1t), each of which (i) is analytic in the extended
plane except for a singularity at z=r, (ii) vanishes at 2=0, and
(iii) is real on the real axis. Then about 2=0 each function in
{I‘,} admits a power series expansion with real coefficients
whose radius of convergence is |7|. Let { II,} be the class of all
such power series, and let {SBr} be the class of all curves B,
through Q each of which is defined parametrically by

4) ¥ = ¢(S) = E ns™, y=y(s) = E bas™,
n=1 n=1

where the power series belong to the class {II,}.

THEOREM 3. For each fixed r, (0< | r| < ), the existence of a
unique limait for f(P) as P—Q on every curve of {iBr} implies the
existence of (1).1

This theorem is an immediate consequence of Lemma 1 and

the following two lemmas, the first of which may be regarded
as evident.

LemMA 2. Corresponding to each enumerable set E there exists
a set G of points (xa, ¥») with Ec G and |x,,| ,[y,,] <n, (n=1,2,
3, 0).

LemwMmA 3. Corresponding to each enumerable set E there exists a
curve B, of the class {EB,} which passes through every point of E.§

Proor. Setting

t It is worthy of note that, by Theorem 2, the existence of a unique limit for
Flo(s), ¥(s)] as s, (|s]| <7’ <r), tends to zero for every curve of {B,} does not
imply the existence of (1).

} It may well be that this lemma or something like it is known, but we have
been unable to locate it in the literature.
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0 2 9 . .
() = 2= =0 I (1= %) m (= pmn 2 22T

)
vl v? rw(m? — w?)

we haveform=1,2,3, - - -,

l g,,.(w)[ < 2eFel’ where k= Y, 1/1?,
(5) y=1
gm(im)=1, gm(in)=0’ (m#n=1,2,3,---).

We first assume 7 finite; let p = | 7| and u be the greatest integer
=< 1/p. Then there exists a o satisfying the relation

(6) pm—1>a0>0, m=p+1,u+2-).
We define expressions ¢, by the formula

™ om = 1/[m*(em — 1)], m=p+1u+2-).
By Lemma 2 there exists a set G of points (£,, 7,) with G2 E and
Ignly lnnl <mn, (n‘—-—l, 2’ 3, ce )_ Letting m:lu—‘-n’ xm=£m
Ym=1n, (8=1,2,3,--.), we have

(8) |xm|;lym|<m—‘/£§m, (m=#+1):u+2;"')‘
From (5), (6), (7), (8), we obtain
I memgm(W) I) I Cmymgm('w) I = zeklwlz/t]’ma,

which shows that each of the infinite series

-]

) Fi(w) = 3 cnamgn(w),  Fa(w) = 3 cnymgn(w)
m=p+1 m=p+1

converges uniformly in any finite region, and accordingly repre-

sents an entire function since g.(w) is entire. Moreover, since

G may be assumed to include a point not on either axis, it is

evident from the definitions of ¢, and gn(w) that neither Fi(w)

nor Fy(w) is a constant. Consequently

(10) Fy(w) = — w'(rw + 1F1(w), Fo(w) = — wi(rw + 1)Fa(w)

are entire functions with singularities at w = . By means of the
transformation

(11) w=1/(z—71),
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Fs(w), Fy(w) are transformed respectively into functions ¢(z),
¥(2) which belong to {T,} and thus determine a curve 8,* of
the form (4). Finally [using (11), (10), (9), (7), and (5)] we ob-
tain for n=u+1, u+2, - - -

d)(?’— 1/”) = Xn, lﬁ(r - 1/”) = Yn, if > 0;
¢(r + 1/n) = x,, Y(r + 1/n) = y,, if r <0,

which proves that the curve B,* passes through each point of
G; E being a subset of G, the lemma is established for the case
of 7 finite.

For 7 = o0, the functions

$(s) =z 20 mgm(z)/mt, Y(z) =2 20 ymgm(z)/m*
m=p+1 m=p+1
which belong to {T',}, lead to the same conclusion if z is as-
signed the values n=u+1, u+2, - - -.
In passing it seems of interest to mention the following corol-
lary.

CoOROLLARY. There exists a curve B, of the class {B,} which
passes through every point in the plane with rational coordinates.

From Lemma 3 it is clear that the class {%r} has Property L;
Theorem 2 then follows by Lemma 1.

4. The Class of Curves {(Q} Let F(x, y)#0 be a real, single-
valued function of the real variables x, y which is analytic in
some neighborhood of Q and for which F(0, 0) =0. Then F(x, y)
=0 defines a curve € through Q. Excluding those curves for
which Q is an isolated point, we denote by {€} the class of all
curves € which remain. By employing a well known theorem of
Weierstrass,t together with an analog of the Puiseux method
for algebraic curves, one may readily verify that for each curve
G of {€} there exists a neighborhood of Q in which all points
of € lie on a finite number of curves of class {2 }. Combining
this fact with the proof of Theorem 2 we obtain the following
theorem.

THEOREM 4. The existence of a unique limit for f(P) as P—Q
on every curve of { (S,} does not tmply the existence of (1).

t Goursat-Hedrick-Dunkel, Functions of a Complex Variable, pp. 233 ff.
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5. The Class of Curves {D}. Let {D} denote the class of all
curves D representable parametrically as

% = x(s), y =05, O=sss1),

where x(s) and y(s) have derivatives of all orders and x(0)
=y(0)=0.

THEOREM 5. If fx(s), ¥(s)] has a unique limit as s tends to
zero for every curve of {ED } , the double limit (1) exists.

PRrOOF. Let S be any set of points having the point Q as a
limit point, and let S* be a subset of points (x,, ¥,) tending to Q
such that we have |x.|, | .| <e V", (n=1,2,3, - - - ). If we set
Li=(1/22s=1), and I,=[1/(n4+1)Ss=2n+1)/Cn(n+1))],
(n=2, 3, 4, - - ), then the equations x(0) =0, x(s) =x,41 for s
in I,, define a function with a closed domain which can be ex-
tendedt to the whole interval (0=<s=1) in such a way that the
extended function x(s) has derivatives of all orders. The func-
tion y(s) is defined similarly. The corresponding curve D is such
that the point [ x(s), y(s) | approaches Q through the set S* as s
tends to zero. This proves that {@} has Property L, and estab-
lishes the theorem.

6. The Class of Curves {€}. Let {€} be the class of all curves
€ through Q, each of which has, with respect to a properly
chosen system of rectangular coordinates &, n with origin at Q,
an equation of the form n=¢(£), where ¢(£) is a single-valued
function with a continuous, non-negative, monotonic increas-
ing first derivative in a certain neighborhood of £=0 and
¢'(0) =0. For a fixed system £, 5 denote by x(£, ), v(&, n) the
coordinates of the point (£, 7) in the original system x, y. Con-
cerning the class of curves {@} we have the following theorem
which is an improvement over Theorem 1 to the extent that
{@} is a proper subclass of the class considered by Clarkson.

THEOREM 6. If f[x(%, ¢(£)), y(&, ¢(£))] has a unique limit as
£ tends to zero for every curve of | € }, the double limit (1) exists.

ProorF. S being any set of points having Q as a limit point
one readily sees by Clarkson's reasoning that axes £, 7 can be

t Whitney, Analytic extensions of differentiable functions defined in closed
sets, Transactions of this Society, vol. 36 (1934), pp. 63—89, Theorem 1.
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so chosen that every closed sector lying in the first quadrant and
having the £ axis as one boundary will contain a subset of .S
having Q as a limit point. If .S has a subset on the £ axis with Q
as a limit point, the curve n=¢(£)=0 of class {@} passes
through a subset of S with the limit point Q, and the definition
of Property L is satisfied. In the alternative case, we can, by the
choice of axes, select a subset S* of .S of points (., 7.) tending
to Q, such that we have

0<£n+1<£n/2: 0<77n+1<’7n/2’
N/ — 0 as n— o, 0 < 2np41/bna < nn/(ZEn)-

From these relations it follows that

i1 Nn < NMn — Nat1 < Nn — Nat1 < N < 29

£"+1 ZEn En gn - En-l—l En - En+1 £n ;

hence .= (M —Nuy1)/(Ex— Eny1) tends monotonically to zero in
the strict sense as n—. Consider the sequence of functions
¢.(&) defined as follows. Let ¢n(§) =nnp1+0a(§—£sq1) on the
interval I,= (£, 1S£5¢,) for n odd. For n even, let ¢,(§)
be any function on I, such that ¢.(£ui1) =Nns1, Pu(€n) =nn,
b (n1+0)=0,41, ¢ (£,—0)=0,_1, and such that ¢, (§) is
continuous and increases monotonically from ¢,41 to 0,1 as £
increases from £,,1 to £,. That such a function exists is clear
from the fact that an arc of an ellipsef can be found whose
equation satisfies these conditions.

In the interval — & <&<§&, let ¢(€) =0 for —§ < £<0, and
let ¢(&) =¢n(§) on I, (=1, 2, 3, -). Then it is easily veri-
fied that the curve 5 =¢(£) is of class {@ }, and by construction
it passes through the set S* as £ tends to zero through positive
values. This completes the proof that {@} has Property L,
and establishes Theorem 6.

BrROWN UNIVERSITY

1 Such an ellipse is given by the equation
[17 — NMn42 —0'n+1($ —En+2) ] ["I —Nn _‘Tn—l(g "En) ] —k [”I — Nn+41 —“7"(“:‘ "En+1) ]2 =0,

for each k> (0n1—0n41)%/ (4(on1—02) (6n—0nys1)).



