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T H E APPROXIMATE SOLUTION OF 
INTEGRAL EQUATIONS* 

BY E. N. OBERG 

1. Introduction. Consider the Fredholm integral equation 

(i) L(u) = u(x) — I k(x, t)u(t)dt = ƒ(#). 
J a 

Let it be assumed that the given function ƒ(x) is continuous in 
the interval a^x^b, and that the kernel k(x, t) is continuous in 
the square a^x^-b, a^t^b. Let us assume also that the equa­
tion L(u) = 0 has no non-trivial solution. Then a unique contin­
uous solution exists for the unknown u(x) of (1) of the formf 

(2) u{x) = ƒ(*) + f H(x, t)f(t)dt, 
J a 

in which the resolvent kernel H(x, t) is a well-determined con­
tinuous function in the square a^x^b, a^t^b. 

Let 

Pn(x) = a0x
n + ai%n~l + - • • + an-ix + an 

be an arbitrary polynomial of degree n. Then a problem in 
minima is to determine the coefficients of this polynomial so 
that the integral 

(3) f \f(x)-L(Pn)\
mdx 

J a 

shall be a minimum, where m is any positive real number. 
The purpose of this paper is to examine the existence and 

uniqueness of such a polynomial and its convergence towards 

* Presented to the Society, June 23, 1933. 
t See, for example, Courant-Hilbert, Methoden der mathematischen Physik, 

2d éd., 1931, vol. 1, pp. 121-124. Less restrictive hypotheses can be placed on 
k(x, t) (see, for example, E. W. Hobson, On linear integral equations, Proceed­
ings of the London Mathematical Society, vol. 13 (1913-1914), pp. 307-340) 
but for the present discussion the hypothesis mentioned above may be re­
garded as sufficiently illustrative. 
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u(x) as n becomes infinite. Various investigations of a similar 
nature have been conducted by Krawtchouk,* Enskog,f and 
Picone,t but by methods different from ours and in every case 
for m>l. Picone has considered the same problem as ours but 
only for the special case m = 2, and by a method which does not 
appear capable of extension to other values of m. Further men­
tion should also be made of a paper by McEwen§ on linear dif­
ferential equations to which the following paper is in many 
aspects an analog. 

2. The Existence and Uniqueness of an Approximating Poly­
nomial. The questions of existence and uniqueness of a poly­
nomial minimizing (3) can be disposed of readily by applica­
tion of theorems which are already well known on least mth 
power approximation. 1f The problem can be looked upon as 
that of approximating the given function f(x) by a linear com­
bination of the n + 1 continuous functions L( l ) , L(x), 
L(x2), • • • , L(xn). These functions are linearly independent in 
the interval a^x^b, since to assume otherwise would lead to 
the conclusion that a polynomial pn{x) exists, not identically 
equal to zero, which satisfies the homogeneous equation 
L(pn) = 0 in contradiction with the hypothesis placed on L(u). 
It follows from the general theorems to which reference has 
been made that for m > 0 a minimizing polynomial exists, and 
that for m>\ this polynomial is unique. 

3. Convergence of the Approximating Polynomial for m ^ l . 
Let Pn(x) be the polynomial which minimizes (3), and u(x) the 
unique continuous solution of (1). Let qn{x) be any nth degree 
polynomial, and en a corresponding upper bound for the abso­
lute value of rn{x) =u(x) — qn(x). Let yn be the minimum of (3) : 

* See M. Krawtchouk, Sur la resolution approchée des équations intégrales 
linéaires, Comptes Rendus (Paris), vol. 188 (1929), pp. 978-980. 

f See D. Enskog, Eine allgemeine Methode zur Auflösung von linear en Inte-
gralgleichungen, Mathematische Zeitschrift, vol. 24 (1926), pp. 670-682. 

X M. Picone, Sul metodo délie minime potenze ponderate e sul metodo di Ritz, 
Rendiconti del Circolo Matematico di Palermo, vol. 52 (1928), pp. 225-254. 

§ See W. H. McEwen, Problems of closest approximation connected with the 
solution of linear differential equations, Transactions of this Society, vol. 33 
(1931), pp. 979-997, and also this Bulletin, vol. 38 (1933), pp. 887-894. 

1 For a proof, see, for example, D. Jackson, On f unctions of closest approxi­
mation, Transactions of this Society, vol. 22 (1921), pp. 117-128. 
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/

6 /» 6 

| ƒ ( » - L{Pn) \mdx = J | L(u) - L(Pn) \mdx 

= I | L(u- Pn)\"dx. 
v a 

W 

Since qn(x) is also a polynomial of the nth degree, it follows from 
the minimizing property of yn that 

| L(u - Pn) \mdx 

ƒ» o s* b 

| L(u — qn) | dx = I | L(rn) | dx. 
a J a 

But 
•£(*n) = rn(x) - I *(#, t)rn(t)dt, 

J a 
whence if |&(x, *)| ^Jkf, 

| £(fn) | ^ | '»(*) | + f | *(*, 0 | | fn(0 | * 
(6) J a 

g\l + M(b- a ) | e n . 

Hence if (6) is substituted in (5), it follows that 

(7) in ^ (Nen)™, 

where N is a positive constant not depending on n or en. 
If the difference Pn(x)—qn(x) is denoted by 7rn(x), then 

rn —7Tn is the same as u — Pn* Let cj)n(x) =rn(x)—Trn(x)y and let 
2(#) represent the continuous function L(</>n) : 

(8) z(x) = 0n(a) - I k(x, t)<t>n(i)dt. 
J a 

From (2), 

<t>n(x) = *(*) + I # 0 , t)z(t)dt, 
J a 

and if |üT(x, / ) | SG throughout the square a^x^b, a^t^b, 
then 
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(9) | 4>n(x) - z(x)\ ^G f | z(t)\dt. 
J a 

The integrand on the right is non-negative and continuous in 
the closed interval (#, b), so that a form of Holder's inequality* 
can be applied to (9) with the result that 

Urn 

| 0n(a) - *(*) | S G(b - a)<«-i>/«r f | z(t) \mdt\ 

The value of the integral in the brackets is yn, and by virtue of 
(7), 

| 4>nW - z(x) | ^G(b - a) yn ^ fxen. 

For convenience in the use of the notation later, it will be under­
stood that ix represents the greater of the two quantities 1 and 
G(b-a)(™-»i™N. But from (8), 

» | 4>n(x) - z(x) | , 

whence 

(10) 

I rb l 
1 k(x,t)<i>n(t)dt 

1 J a 

I rb I 
1 k(x,t)(t>n(t)dt 

1 J a 

Let the maximum of |7rn(x)| for a^x^b be juo"n, and x0 a 
point in the interval where | Tn(x0) | = /z<r». Then from Markoff's 
theorem,f 

| TTn (x) | ^ 2/j,n2<Tn/(b — a) 

for all values of x in a^x^b. For \x — x0\ ^(b— a)/4n2 , by the 
mean value theorem, 

* We are applying the inequality 

fa
bF(x)dx ^(b-a) (p~»lp [fa

b [F(x) ]pdx]l*p, 
where F(x) is assumed ^ 0 , and P ^ l . It is because of the fact that Holder's 
inequality applies for P ^ 1 only, that we must break up the convergence proof 
into two parts, one for m ^ l , and the other for m<l, which must be ap­
proached by a different method. 

t See, for example, D. Jackson, Transactions of this Society, vol. 22 (1921), 
p . 163. 
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| TTnO) — TTn(Xo) | ^ AWn/2, 

from which it follows that 

| 7Tn(x) | ^ fX<Jn/2. 

Let it be assumed for the time being that en is less than or at 
most equal to <rw/4 (the contrary case which leads directly to 
the desired conclusion will be discussed later). Then 

| <t>n{0C) | = | TTn{x) — rn(x) | ^ | Tn(x) | - | Tn(x) \ 

}X 1 fl /* /J, 

2 4 2 4 4 

With (10) this gives 

a 

U (*n \ 

or, since at least one-half of the interval \x — xQ\ S (ô —a)/(4w2) is 
contained in (a, b) and since cfrn — rn—irn^u — Pn, 

b — a 
Yn ^ M U " € v l • 4w2 

Under the assumption that en ^ <rn/4 it is found that 

/ i i \ ^ 2/m 1/m 

(11) ^ = 77 TTT^ ?» + 4 ^ -

On the other hand, if the assumption is made that en is greater 
than o"n/4, then (7n<4en, so that (11) is generally true. 

Furthermore, since |7rn(#)| ^M^n and | r n (x) | r^en, it follows 
that 

| 4>n(x) | = | rn(x) - 7Tn(#) I ^ €„ + /i<Tn. 

But rn — 7rn is identical with u — Pn; hence 

4.41/m 
I «(a) - Pw(a) I ^ — — - n myn

m + 4/xen + €n. 
(b - a ) l / w 

It is now apparent that, for n sufficiently large, since yn ^ (N€n)
 m, 
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| u{%) - Pn(x)\ ^ Sn*lmen, 

where 5 is a positive constant. 
The previous discussion can be summed up as follows. 

THEOREM 1. If u(x) is a solution of the integral equation 

L(u) = u(x) — I k(x, t)u{i)dt = f(x), 

J a 
under the hypothesis on L(u) already stated, and if Pn(x) is the 
approximating polynomial to u(x) determined by the least mth 
power method, then a sufficient condition for the convergence of 
Pn{x) towards u{x) is that it be possible to choose polynomials 
qn(x) for every value of n so that 

lim n2lmen = 0, 
ft—>oo 

where en is an upper bound for \u(x)—qn(x)\ in the interval 
(a, b). 

The last condition can be interpreted in terms of continuity 
of u(x) and its derivatives, and these in turn will be guaranteed 
by imposition of suitable hypotheses on the given functions 
f(x) and k(x, t). I t appears from the representation 

ch 

u(x) = f(x) + I k(x, i)u{i)dt 
^ a 

that if f{x) has a modulus of continuity not exceeding co(S), 
and if k(x, t) as a function of x has, uniformly with respect to t, 
a modulus of continuity not exceeding a constant multiple of 
co(S), then u(x) likewise has a modulus of continuity not exceed­
ing a constant multiple of co(S). For the case m> 2, the condition 
that it be possible to make n2lmen approach zero will be satis­
fied, according to known theorems on approximation,* if 
lim^o co(ô)/52/m = 0. In a similar way it is seen from the repre­
sentation 

— k(x, i)u{t)dt 
a dxp 

* D. Jackson, The Theory of Approximation, American Mathematical So­
ciety Colloquium Publications, vol. XI, 1930, pp. 13-18. 
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for the pth derivative of u(x) that , when Km^2, sufficient 
conditions for convergence can be formulated in terms of proper­
ties of continuity of ƒ(#), k(x, t), and kx(x, f), and that for m = 1 
there are corresponding conditions involving second derivatives. 

4. Convergence of the Approximating Polynomial for m<\. In 
order to proceed with the discussion of convergence of the ap­
proximating polynomial Pn(x) for m < 1, there is occasion to add 
to the hypothesis already assumed for equation (1) the con­
dition that kx(x, /), the derivative of k(xf f) with respect to x, 
be a continuous function of the two variables in the closed re­
gion a^x^b, a^t^b. 

Before presentation of the actual convergence theorem, the 
following auxiliary theorem will be established. 

If pn{oc) is an arbitrary polynomial of the nth degree, and L(u) 
the expression defined in (1), then, if rj is the maximum of \ L(pn) \ 
onaSocSb, 

pn(x) | ^ Arj, 

and 

— L[pn(x)] 
dx 

g Bn2
v 

for all values of x in (a, b), where A and B are positive constants 
depending neither on n nor on the coefficients in pn(x). 

Let 

Since 

* ( X) = L(pn) = pn(x) ~ I k(x, t)pn 
J a 

(t)dt. 

pn(x) = R(x) + I H(x, t)R(t)dt, 
*J a 

it follows tha t 

pn(x)\ g\R(x)\ + f \H(x,t)\\R(t)\ 

g["l+ ƒ Gdtlr, -At,, 

it 
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where A =l+G(b—a). Moreover, as it was assumed that 
kx(x, t) is continuous in a^x^b, aStSb, 

dx 

whence 

d rh 

— [L{pn)\ = Pn O) ~ kx(x, t)pn(t)dt, 
dX J a 

d r 
T[L{Pn)] 
dx 

^ I *. '(*) I + f I kx(x,t)\\pn(t)\dt. 
J a 

The function pn(x) is a polynomial of the nth. degree; hence, by 
MarkofTs theorem, |/>* (#)| ^ i W r ç , where N' is a constant 
independent of rj and the polynomial pn(x). I t follows, there­
fore, if | kx(x, t)\ <*M' in (a, 6), that 

— [Upn)] S N'n2r) + M'A(b - a)v. 
dx I 

Consequently, 

à r 

- [L(Pn)} 
dx 

g Bn2ri, 

where B is a constant. 
To proceed with the convergence theorem, let x0 be a point 

in a^x^b at which |L(7rn) | attains its maximum, where 7rn(x) 
has the same meaning as in the preceding section, and let this 
maximum be denoted by rj. Then if x is interior to the interval 
\x — XQ\ ?^\/(2n2B), or the part of this interval which is con­
tained in (a, b), in case Xo is distant from a or & by less than the 
amount indicated, and, if the mean value theorem is applied 
to L{irn) together with the conclusions of the above auxiliary 
theorem, it is seen that 

| L[irn(x)] - L[TH(XO)] I ̂  rj/2, 

whence |L(7rn)| èrç/2. But 

\L(rn)\g\rn(x)\+ f \k(x,t)\\rn(t) dt ^ | 1 + M(b - a) \ en. 
J a 

So if for the time being it be assumed that 11 + M(b — a) \ en ^ r;/4, 
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| L(irn) - L(rn) | è | ifcr») I - I L(rn) | è i|/4 

throughout the interval specified. Hence 

from which it follows that 

rj < 4 ( 2 ^ 2 7 n ) 1 / m . 

If, on the other hand, we assume that [l + M(b — a)]€n^rç/4, 
then 

1 £ 4[1 + M(b - a)]en. 

I t is therefore evident that in all cases 

rj g 4(2£rc27n)1/w + 4[1 + M(b - a)]en. 

Since by the auxiliary theorem |7rw(tf)| = 4̂*?> while |rw(*0| ^€ n , 

| rn(x) - Tn(x) | ^ | rn(x) | + | *»(*) | ^ 4 ^ ( 2 ^ ^ 7 n ) 1 / w 

+ 44 [ l + A f ( 6 - a ) K + en. 

Furthermore, since rn—irn is the same as u — Pn and yn ^ (iVen)
m, 

| U(X) ~ P n ( * ) | S ^ 2 / m € n 

for all values of x in the interval (a, b), where A' is a positive 
constant not depending on n or on ew. The following theorem 
can therefore be stated for the case m < 1. 

THEOREM 2. If in addition to the hypothesis of Theorem 1, the 
assumption is made that kx(x, t) is continuous in the square 
a^x^by a^t^b, then the conclusion of Theorem 1 is valid f or 
m<\. 

The conditions to be imposed on f{x) and k(x, t), in order that 
it may be possible to make n2lmen approach zero, are similar to 
those which were mentioned after Theorem 1 for the case 
1 <m ^ 2, with suitably modified specifications involving second 
derivatives or derivatives of higher order. 

T H E UNIVERSITY OF MINNESOTA 


