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THE APPROXIMATE SOLUTION OF
INTEGRAL EQUATIONS*

BY E. N. OBERG

1. Introduction. Consider the Fredholm integral equation
b
® L) = (@) = [ b, Dutiat = (2.

Let it be assumed that the given function f(x) is continuous in
the interval ¢ £x <b, and that the kernel k(x, £) is continuous in
the square a Sx<b, a <t =<b. Let us assume also that the equa-
tion L(%) =0 has no non-trivial solution. Then a unique contin-
uous solution exists for the unknown u(x) of (1) of the formt

b
@ ue) = 1) + [ HG, 0,

in which the resolvent kernel H(x, t) is a well-determined con-
tinuous function in the square a =x=<b, a St<b.
Let

Po(x) = apx™ + a10™ 1+ - -+ + @1 + an

be an arbitrary polynomial of degree #n. Then a problem in
minima is to determine the coefficients of this polynomial so
that the integral

3) [ 15 = e "as

shall be a minimum, where m is any positive real number.
The purpose of this paper is to examine the existence and
uniqueness of such a polynomial and its convergence towards

* Presented to the Society, June 23, 1933.

t See, for example, Courant-Hilbert, Methoden der mathematischen Physik,
2d ed., 1931, vol. 1, pp. 121-124. Less restrictive hypotheses can be placed on
k(x, t) (see, for example, E. W. Hobson, On linear integral equations, Proceed-
ings of the London Mathematical Society, vol. 13 (1913-1914), pp. 307-340)
but for the present discussion the hypothesis mentioned above may be re-
garded as sufficiently illustrative,
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u(x) as #» becomes infinite. Various investigations of a similar
nature have been conducted by Krawtchouk,* Enskog,t and
Picone,} but by methods different from ours and in every case
for m>1. Picone has considered the same problem as ours but
only for the special case m =2, and by a method which does not
appear capable of extension to other values of m. Further men-
tion should also be made of a paper by McEwen§ on linear dif-
ferential equations to which the following paper is in many
aspects an analog.

2. The Existence and Uniqueness of an Approximating Poly-
nomial. The questions of existence and uniqueness of a poly-
nomial minimizing (3) can be disposed of readily by applica-
tion of theorems which are already well known on least mth
power approximation.§ The problem can be looked upon as
that of approximating the given function f(x) by a linear com-
bination of the #-+1 continuous functions L(1), L(x),
L(x?), - -+, L(x"). These functions are linearly independent in
the interval a =x <0, since to assume otherwise would lead to
the conclusion that a polynomial p,(x) exists, not identically
equal to zero, which satisfies the homogeneous equation
L(p,) =0 in contradiction with the hypothesis placed on L(u).
It follows from the general theorems to which reference has
been made that for m >0 a minimizing polynomial exists, and
that for m >1 this polynomial is unique.

3. Convergence of the Approximating Polynomial for m=1.
Let P,(x) be the polynomial which minimizes (3), and u(x) the
unique continuous solution of (1). Let ¢g.(x) be any #th degree
polynomial, and e, a corresponding upper bound for the abso-
lute value of 7,(x) =u(x) —g.(x). Let v, be the minimum of (3):

* See M. Krawtchouk, Sur la résolution approchée des équations intégrales
linéaires, Comptes Rendus (Paris), vol. 188 (1929), pp. 978-980.

t See D. Enskog, Eine allgemeine Methode zur Auflosung von linearen Inte-
gralgleichungen, Mathematische Zeitschrift, vol. 24 (1926), pp. 670—682.

1 M. Picone, Sul metodo delle minime potenze ponderate e sul metodo di Ritz,
Rendiconti del Circolo Matematico di Palermo, vol. 52 (1928), pp. 225-254.

§ See W. H. McEwen, Problems of closest approximation connected with the
solution of linear differential egquations, Transactions of this Society, vol. 33
(1931), pp. 979-997, and also this Bulletin, vol. 38 (1933), pp. 887-894.

9 For a proof, see, for example, D. Jackson, On functions of closest approxi-
mation, Transactions of this Society, vol. 22 (1921), pp. 117-128.
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b b
vo= [ 1@ — 2 an = [ 200 - 1P ["d
4) . ’
-—-f | L(u — P,)|"dx.

Since ¢.(x) is also a polynomial of the nth degree, it follows from
the minimizing property of v, that

b
Yo = f | L(u — P,)|"dx

(5 , )
f | Lu — ¢o) |"da = f | L(r) ["ds.

IIA

But ,
Lo = ra@ = [k, D,

whence if ]k(x, t)] =M,

b
o e sinl+ [l ollnola

S+ M0 - 0)e.
Hence if (6) is substituted in (5), it follows that
(7) Yo = (Nen)ma

where N is a positive constant not depending on # or e,.

If the difference P,(x)—g.(x) is denoted by w.(x), then
7n—m, is the same as u— P,. Let ¢,(x) =7,(x) —m.(x), and let
z(x) represent the continuous function L(¢,):

®) 5(3) = @) = [ Gz, Dut
From (2),
b
m@=%@+fHWMMM

and if |H(x, t)l =G throughout the square a <x<b, a St=<b,
then
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b
O le@—s@lse[ [s0]a

The integrand on the right is non-negative and continuous in
the closed interval (e, b), so that a form of Hélder’s inequality*
can be applied to (9) with the result that

b 1/m
| gu) — 2(2) | < G — a><m—1>/m[ IREC ]mdt:l .

The value of the integral in the brackets is ., and by virtue of

™,

(m—=1)/m 1/m
» <

= ue,.

| () — 2(0)| S G(b — @)

For convenience in the use of the notation later, it will be under-
stood that u represents the greater of the two quantities 1 and
G(b—a)!mVI»N, But from (8),

f (%, a(t)dt| = | ¢a(x) — 2(x) |,

whence

(10) fbk(x, e ()dt| S pen.

Let the maximum of |r,(x)| for a<x<b be uo,, and x; a
point in the interval where lvr,.(xo)[ =uo,. Then from Markoff's
theorem, }

| 7! (2) | < 2une,/(b — a)

for all values of x in ¢ =x<b. For Ix—xg{ =< (b—a)/4n?, by the
mean value theorem,

* We are applying the inequality
S F@)dx < (b—a) PDP[[2[F(x) [Pax]HP,
where F(x) is assumed =0, and P21. It is because of the fact that Holder's
inequality applies for P =1 only, that we must break up the convergence proof
into two parts, one for m=1, and the other for m <1, which must be ap-
proached by a different method.

t See, for example, D. Jackson, Transactions of this Society, vol. 22 (1921),
p. 163.
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I ma(%) — Wn(xo)‘ =< uol/2,
from which it follows that
| 7o) | 2 poa/2.

Let it be assumed for the time being that €, is less than or at
most equal to 0,/4 (the contrary case which leads directly to
the desired conclusion will be discussed later). Then

| 6a(@) | = | 7a(®) = 7a(@) | Z | 7u(@) | = | 7a(=) |
gﬁ"an—’l_a'ngian—-ian=—/ia"'
4

2 4 2 4
With (10) this gives

1%

) b, t>¢n<t>dt‘

M On
Z‘O'n_ﬂen=ﬂ Z'_en 3

or, since at least one-half of the interval [x — x| < (b—a)/(4n?) is
contained in (a, b) and since ¢p,=7,—m,=u—P,,

b—a (an >
M 4 €n

4n?
Under the assurnption that e, <¢,/4 it is found that

v

m

Y 2

4,41/m 2/m 1/m
<
OTn = (b — a)l/mn Yn 4de, .

(11)

On the other hand, if the assumption is made that e, is greater
than ¢,/4, then o, <4e,, so that (11) is generally true.

Furthermore, since |1r,.(x)| <uoc, and |r,,(x)| =e,, it follows
that

I ¢"(x)l = | r,.(x) - Wn(x)l = e + uon.
But 7, —m, is identical with # — P,; hence
4.41m o/m 1m
| u(x) — Pn(x)l = m” Yo+ duen + €.

It is now apparent that, for # sufficiently large, since v, < (Ne,) ™,
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| u(x) — Pa(x)| < Sn?ime,,

where S is a positive constant.
The previous discussion can be summed up as follows.

THEOREM 1. If u(x) is a solution of the integral equation
b
L(u) = u(x) — f k(x, Hu(t)dt = f(x),

under the hypothesis on L(u) already stated, and if P,(x) is the
approximating polynomial to u(x) determined by the least mih
power method, then o sufficient condition for the convergence of
P,(x) towards u(x) is that it be possible to choose polynomials
qn(x) for every value of n so that

lim n?/me, = 0,

n—> 0

where €, is an upper bound for Iu(x)—gn(x)l in the interval
(a, b).

The last condition can be interpreted in terms of continuity
of #(x) and its derivatives, and these in turn will be guaranteed
by imposition of suitable hypotheses on the given functions
f(x) and k(x, t). It appears from the representation

b
u(x) = f(x) + f k(x, H)u(t)dt

that if f(x) has a modulus of continuity not exceeding w(é),
and if k(x, ¢) as a function of x has, uniformly with respect to ¢,
a modulus of continuity not exceeding a constant multiple of
w(8), then u(x) likewise has a modulus of continuity not exceed-
ing a constant multiple of w(8). For the case m> 2, the condition
that it be possible to make 7% ™, approach zero will be satis-
fied, according to known theorems on approximation,* if
lim;.o w(8)/62/m=0. In a similar way it is seen from the repre-
sentation

b gr
u? (x) = @ (x) + f oo Kl Hult)at

* D. Jackson, The Theory of Approximation, American Mathematical So-
ciety Colloquium Publications, vol. XI, 1930, pp. 13-18.
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for the pth derivative of u(x) that, when 1 <m =2, sufficient
conditions for convergence can be formulated in terms of proper-
ties of continuity of f(x), k(x, ), and k.(x, £), and that for m =1
there are corresponding conditions involving second derivatives.

4. Convergence of the A pproximating Polynomial for m <1. In
order to proceed with the discussion of convergence of the ap-
proximating polynomial P,(x) for m <1, there is occasion to add
to the hypothesis already assumed for equation (1) the con-
dition that k.(x, t), the derivative of k(x, ) with respect to x,
be a continuous function of the two variables in the closed re-
gion a Sx<b, a<t=b.

Before presentation of the actual convergence theorem, the
following auxiliary theorem will be established.

If pu(x) s an arbitrary polynomial of the nth degree, and L(u)
the expression defined in (1), then, if n is the maximum of ]L(p,,)|
oma=x=<b,

| pa() | < 4n,

and

( f; L{pa(x)] . < Bn¥

for all values of x in (a, b), where A and B are positive constants
depending neither on n nor on the coefficients in p,(x).
Let

b
R(x) = L(pa) = pul®) — f k(, £)pult)dt.

Since

b
Pa(x) = R(x) + f H(x, t)R(t)dt,

it follows that

| pa(®) | = | R(®)| +f | H(x, ) || R(2)| dt

b
= [1 + f Gdt:ln = An,
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where A =14+G(b—a). Moreover, as it was assumed that
k.(x, t) is continuous in e <x <b, a <t <0,

d b
— (L] = p () - 1] ki, 00O

whence

d b
= [Lp)] | =] 24 () | + fa | ko, ) || pa(t) | d2.

The function p.(x) is a polynomial of the nth degree; hence, by
Markoff’s theorem, ]pn’ (x)] < N’'n?y, where N’ is a constant
independent of 7 and the polynomial p,(x). It follows, there-
fore, if | kz(x, )| <M’ in (a, b), that

d
‘ I [L(pa)] \ S N'np+ M'A(b — a)n.
Consequently,

= Bn™n,

d

where B is a constant.

To proceed with the convergence theorem, let ¥y be a point
in @ £x<b at which |L(w,)| attains its maximum, where m,(x)
has the same meaning as in the preceding section, and let this
maximum be denoted by 7. Then if x is interior to the interval
|x—x¢| £1/(2n2B), or the part of this interval which is con-
tained in (e, b), in case x, is distant from ¢ or b by less than the
amount indicated, and, if the mean value theorem is applied
to L(m,) together with the conclusions of the above auxiliary
theorem, it is seen that

| L[m(®)] = Llma(x0) ]| = 0/2,
whence |L(w,)| =7/2. But

b
]L(r,,)|§|r,,(x)|+f [k(a,8) | | 7a(t) dt < |1+ M= a)]en-

So if for the time being it be assumed that |14 M (b —a)| e, <n/4,
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| L(m) — L(m) | 2 [ L(ra) | = | L(ra) | 2 /4
throughout the interval specified. Hence
Yo = f bl L(ma)— L(r,) |mdx 2 ——1—<—"—>m,
a 2n?B\ 4
from which it follows that
1 = 4(2Buty,)lm.

If, on the other hand, we assume that [1+M(b—a)le.=7/4,
then

1 = 4[1 4+ MO — a)]e.
It is therefore evident that in all cases
1 = 4(2Bny,)Vm 4+ 4[1 + M(b — a)]e.
Since by the auxiliary theorem |7r,,(x)| <An, while |r,,(x)l Zen,
| 7a(%) = ma(@) | S | ra(@) | + | ma(a) | < 44(2Bnty,)t/m
+44[1 4+ M — a)]en + €.
Furthermore, since 7, —m, is the same as u — P, and v, < (Ne,) ™,
| u(x) — Pu(a)| < 4'nIme,
for all values of x in the interval (a, b), where A’ is a positive

constant not depending on % or on e,. The following theorem
can therefore be stated for the case m <1.

THEOREM 2. If in addition to the hypothesis of Theorem 1, the
assumption is made that k.(x, t) is continuous in the square
a<x=b, aSt=<b, then the conclusion of Theorem 1 is valid for
m<1.

The conditions to be imposed on f(x) and k(x, ¢), in order that
it may be possible to make #? ™, approach zero, are similar to
those which were mentioned after Theorem 1 for the case
1 <m £2, with suitably modified specifications involving second
derivatives or derivatives of higher order.
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