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IRREDUCIBILITY OF POLYNOMIALS OF DEGREE =
WHICH ASSUME THE SAME VALUE » TIMES*

BY LOUIS WEISNER

1. Introduction. A polynomial F(x) of degree %, with integral
coefficients, which assumes the same value % for » distinct in-
tegral values of x has the form

F(x)=a0(x—a1)(x—a2)--~ (x—dn)'l'k; (a07£0),

where the a’s denote integers, and a4, a2, - - - , @, are distinct.
The irreducibility of polynomials of this type in the field of
rational numbers has been discussed by several writers for the
particular casest |k|=1, |k|=prime.

The present paper is concerned with the irreducibility of
F(x) for the case in which k is any integer 0. It is obvious that
even when the a’s are fixed, an infinitude of choices of % exists
for which F(x) is reducible. What is not obvious is that when &
and #» are fixed, only a finite number of non-equivalent reducible
polynomsials of the form F(x) exist. Two polynomials F(x) and
G(x), with integral coefficients, are regarded as equivalent if an
integer % exists such that F(x)=+G(+x+%). Moreover, if
only k is fixed, but # is sufficiently large, every polynomial of the
form of F(x) is irreducible.

2. Isolation of the Roots of f(x). The polynomial F(x) of §1 is
evidently equivalent to the polynomial

f(®) = ax(® — t1) -+ - (2 — tp1) £ &,

where a, k, t, - - -, t,_1 are positive integers, and the t's are
distinct. We shall confine our attention to f(x) and assume that
n=2. We shall denote by x4 a root of f(x) whose absolute value
is a minimum, and the other roots by x1, - - -, x,—1. Taking the
ratio of the coefficient of x to the constant term in each of the
last two members of

* Presented to the Society, September 5, 1934.

t For literature, see Dorwart and Ore, Annals of Mathematics, vol. 34
(1933), p. 81; A. Brauer, Jahresbericht der Deutscher Mathematiker Vereini-
gung, vol. 43 (1933), p. 124.
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(1) f(x)=dxﬁ(x—¢i)ik=aﬁ(x—xi);

=0

we have

dtl v tn_1 1

—— e =+

k %o Fn_1
Hence
nk
(2 |#]| £ ———
atl “ .. tn_]

In the same way we infer from

fx+¢) = ax(x 4 ¢) ﬁ (x+2;—t:) £ &

i=1,i%]
n—1

=a]] (x+¢t; — x),
=0

that, to each index j=1, there corresponds an index p such that
nk

n—1
at; II |4~ #]

1=1,17%]

(3) l ti - pr

IIA

) O=p=n-—1).

THEOREM 1. If the inequalities
2nk < aty - - - tn_l,
4) = )
2nk < ai; IIlti_tiI) G=1,---,n—1),

i=1,1%]

are satisfied, the roots of f(x) are all real and lie within the intervals

[ Lo [t 1 t+1] G )
2’ 2]7 7 2’1 27 J =1, yn .

From (2), (3) and (4) we have

1 1 )
(5) |x0|<"2") It;—xp[<7, U:l,...’n_l).

These inequalities show that each of the # circles
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1 1 ,
(6) ]x|=7; lx——tjt=—2—: (]=1,---,n-—1).
contains a root of f(x). As #;, - - - , t,—1 are distinct positive in-

tegers, no two of these circles intersect. It follows that each of
the circles (6) contains one and only one root of f(x). As a circle
with center on the axis of reals which contains one of two con-
jugate imaginary numbers contains the other, while each of the
circles (6) contains only one root of f(x), the roots of f(x) are
real and lie within the stated intervals.* We shall choose our
notation so that

1
(7 Ih—MI<7’ (Gi=1,---,n—1).

3. Irreducibility of f(x). It is convenient to define A =\(z) by
A2) =1, M3 =4, MH =6, N5) =3, \6)=1,

® An) =0if nzT.

THEOREM 2. The polynomial f(x) is irreducible if at least one of
the n inequalities

(9) a>2"k2 41, t1>(3+)\)k7 (i=1,~-,n——1),
is satisfied.

With the aid of (8) and the fact that the #'s are distinct posi-
tive integers, it is readily proved that each of the inequalities
(9) implies all of the inequalities (4). The roots of f(x) are there-

fore isolated as described by Theorem 1.
Suppose that f(x) is reducible:

(1) f(x) = B)C(x) = 3 bomo- 3 ey, (bocy  0),

v=0 v=0

(1=2r=n—1;1=s=n—1;r4+s=mn),theb’sand ¢’s being integers.

Let B(x) be that factor which has xoasaroot;and let xy, - - -, x,
be the roots of C(x), so that
(11) C(x) = CoH (x — x;) = Z Cox%7,

=1 v=0

* The referee has called my attention to an alternative proof which consists
in showing that f(1/2) and f(—1/2) have opposite signs, and that f(¢;—1/2)
and f(¢;+1/2) have opposite signs.
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By Theorem 1, the roots of C(x) are >1/2, and at most one of
them is <1.

As b.c,= Tk,
(12) B> ﬁl=x1-~-xs.
Co
Hence
(13) |x;| < 2k, G=1,---,9.

Substituting x=¢; in (10), we have

B(ti)C(ti) =f(ti)= + k, (‘L= 1,,”—1)
Hence

leo| IT1 & = @5 = | C@t)| < k.
1
As Ico[ =1, an index j exists such that
| 4 — «;| < &, 15j55).
It follows from (13) that
(14) ts
Multiplying the equations

IIA

3k, (i=1,---,n—1).

n—1
axinlxi—til=k) (j=1,"',8),

=1

obtained by substituting x =x; in (1), we have by (11),

Cs I ﬁ I C(t‘t)

i=1

(15) a®

= k‘lco”\.

From the nature of the roots of C(x) and (12), we have
les| = |col /2. As ¢, is a divisor of &, |co| <2k. As C(:) is an
integer %20, it follows from (15) that a®*=<27k»t*-1, If s has its
maximum value #—1, this inequality becomes a"~* < 2np2(»=1),
whence a £27%% If s<n—1, we have, with the notation (7),

1
Iti—le>~2—: (i=s+1,---,n—1).
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(The right member may be replaced by 1 for all but one x;.)
Hence | C(t;)| > | co| /2, and

n—1 I n—s——-l ’

II lce| > —

T=8+1
It follows from (15) that
al § 2n-—sks| Cols é anZs,

whence ¢ =27k2. As this inequality, and (14), contradict (9),
we conclude that f(x) is irreducible.
The example

b2x(x — 1)(x — 3)(x —4) —3b— 1
= (bx? — 4bx + 3b + 1)(bx? — 4bx — 1),
in which ¢ =0?, k=301, shows that the first of the inequali-
ties (9) cannot be replaced by one which is linear in %.
While the inequalities (9) can undoubtedly be weakened by

further analysis, without affecting the irreducibility of f(x),
they suffice to establish the following general theorems.

THEOREM 3. Only a finite number of non-equivalent reducible
polynomials of degree n exist which assume a given integral value
#0 for n different integral values of the variable.

For, if n and % are fixed positive integers, only a finite number
of sets of positive integers a, #, - - -, t,—1 exist which violate all
the inequalities (9).

THEOREM 4. If k is a fixed integer #0, and n is sufficiently
large, every polynomial of degree n which assumes the value k for
n distinct integral values of its argument is trreducible.

At least one of the integers f;, - - -, #,—1is =#n—1. Hence if
n=7 and n>3k+1, at least one of the inequalities

t; > (3 4+ Nk, (t=1,---,n—1),
is satisfied, and f(x) is irreducible.
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