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sequences remove the first # —1 of the e,'s occurring in the left-
hand end position and place this truncated sequence on the
same horizontal line with the other and to its right. The result-
ing sequence of the ¢’s obviously contains each of the #" permu-
tations exactly twice.

The case of an arbitrary k is then readily disposed of by suc-
cessive applications of this process.
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CRITERIA FOR THE IRREDUCIBILITY
OF POLYNOMIALS*

BY LOUIS WEISNER

1. Introduction. If a polynomial with integral coefficients is
reducible in the field of rational numbers, the task of decom-
posing it into the product of irreducible polynomials may be
expected to involve a great deal of numerical work, commen-
surate with the degree and coefficients of the polynomial, such
as is required by Kronecker’s method. But when it is merely re-
quired to know whether or not the polynomial is reducible, the
amount of labor required by Kronecker’s method is altogether
too great. As a polynomial is completely determined by a
sufficiently extended table of values, these values should suffice
to determine the reducibility or irreducibility of the polynomial.
We can hardly expect to establish the reducibility of a poly-
nomial of degree 7, with fewer than n-1 entries in its table of
values. For this reason criteria establishing the reducibility of
a polynomial are unknown. No such criteria are established in
the present paper. On the other hand, one entry in the table of
values of a polynomial may be sufficient to establish its 4r-
reductbility. The present paper is concerned with criteria of this
sort.

One such criterion is available:} if for a sufficiently large
integer %, f(h) is a prime, where f(x) is a polynomial with inte-

* Presented to the Society, March 30, 1934,
t See P. Stickel, Journal fiir Mathematik, vol. 148 (1918), p. 109; Pélya and
Szegd, Aufgaben und Lehrsitze, vol. 2, p. 137, Ex. 127,
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gral coefficients, then f(x) is irreducible.* The applicability of
this theorem is clearly limited, for it is well known that an ir-
reducible polynomial may represent no prime. Moreover, the
first prime represented by a polynomial may be large, and
considerable fruitless calculations may be expended in discover-
ing it.

The criteria described in §3 have a wider range of appli-
cability. The sense of these criteria is that, subject to certain
conditions, a polynomial is irreducible if it represents the integer
+kp™, (p prime), where & is relatively small. These criteria are
well adapted to establishing the irreducibility of numerical
polynomials and lead to the construction of large classes of ir-
reducible polynomials.

2. Irreducibility Determined by Leading and Final Coefficients.

THEOREM 1. Let L and M be lower and upper bounds, respec-
tively, of the absolute values of the roots of a reducible polynomial

A(x) = D a,am, (n =2, a #0),
v=0
with integral coefficients, and suppose that

| an| = kpm, (kz1,mz1),

where p is a prime which does not divide an—1 if m>1.
A. IfL=1,then k= L. B. If M 2 1, then p™ < | ao| M.

As A(x) is reducible,
A(x) = B(x)C(x) = X bya™" 3 c,x°~?,

v=0 v=0

A=r=n—-—1;1=s=n-—1),
the b’s and ¢’s being integers. We have

p—1 = br—lca + brca—-l,
kpm = |an| =[] al.

* Except where the contrary is explicitly stated, the terms reducible and
irreducible will be understood to apply to the field of rational numbers through-
out this paper.
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As @, is not divisible by p if m > 1, one of the integers b, ¢, is
not divisible by p. If b, is not divisible by p, ¢, is divisible by
p™. If m=1, at least one of the integers b,, ¢, is divisible by p,
and we shall suppose that ¢, has this property. In both cases
¢, is divisible by p™. Hence

lel 29  |&] =k
Denoting the roots of B(x) by B4, - - -, Br, we have
b,
| 8| - |8 =] = |=|b| =k
bo
Hence, as the roots of B(x) are roots of 4 (x),
k=L,
from which the first part of the theorem follows.
Denoting the roots of C(x) by 71, - - -, vs, we have
68 Pm pm
Iﬂyll...|78|= =—-———g.____
leol | aol

as cg is a divisor of ay. Hence
Pm é | dol Ma,

from which the second part of the theorem follows.

The rational roots, and hence the linear factors, of a poly-
nomial with integral coefficients, are readily determined by
elementary methods. If A(x) is reducible, but has no linear
factors, 2=r=<n—1, 2<s=<n—2. Hence we have the following
theorem.

TuEOREM 2. With the notation and hypothesis of Theorem 1,
if A(x) is reducible but has no linear factor, then

bzl pm=|af e
As an illustration, consider the polynomial
a4+ x + pm (™ > 2).

Its roots are easily shown to be outside the unit circle. It follows
from Theorem 1A, with k=1, that the polynomial is irreducible
if p™ is any prime-power integer >2.
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3. Irreducibility Determined by Integers Represented by a
Polynomial.

THEOREM 3. Let M be an upper bound of the absolute values of
the roots of a polynomial A(x) of degree n with integral coefficients
and leading coefficient ao#0; and let h be an integer such that

|#] 2z M+1, | A(m)| = kpm,

where p is a prime which does not divide A'(h) iof m>1. If A(x)
s reducible,

Ez|h| - M, pm = ao] (| 2] + a1
If A(x) is reducible but has no linear factor,
kz (| ] = ), pm = | aol (| B + 2y~
Evidently, A(x) and A(x+h)=ax"+ - - - +A4'(h)x+A(h)

are simultaneously reducible or irreducible. If p is a root of
A(x+h), p+his a root of A(x), so that |p—|—h| < M. Hence

ol =lh—=G+mlzli|=[p+r 2|1 - M,

lol = [ n|+ 2.
As || =M and |h| 4+ M are lower and upper bounds, respec-
tively, of the absolute values of the roots of 4 (x-+%), the the-

orem follows from those of §2.
As an illustration, consider the polynomial

A(x) = 2% — 2x* + 23 4 22 — 4 — 3,
which represents only multiples of 3, so that Stickel’s criterion
(§1) is inapplicable. Here we may take M =2. We find that
A(— 5) = 3.4759,

and 4759 is a prime. As the polynomial has no linear factor, and
the inequality

Ex (| k] — M)

is violated, the polynomial is irreducible.

If M is large, the application of Theorem 2 involves com-
putations with large figures. The next theorem may then be
found more practicable. Let
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A(x, ) = 2 apamry?

v=0
be the homogeneous polynomial corresponding to
A(x) = Z Q™0
v=0
The homogeneous polynomial corresponding to 4’(x) is denoted
by 4'(x, y).

THEOREM 4. Let L be a lower bound of the absolute values of a
polynomial A (x) with integral coefficients; and let t and u be
integers such that

|u|L —|¢] =1, | A, u)| = kpm,

where p is a prime which does not divide A’ (¢, u) if m>1. If A (x)
s reducible,
Ez|u|L—]t].

If A(x) is reducible but has no linear factor,
Bz (lulL—|¢t])e.

It follows, as in the proof of Theorem 3, that |u|L—|¢| is
a lower bound of the absolute values of the roots of the poly-
nomial

A(x + ¢, u) = agxm + - - - + A, wx + AQ, u),
which is reducible if 4 (x) is. The theorem follows by those of §2.
4. Certain Classes of Irreducible Polynomsials.

THEOREM 5. If f(x) is a polynomial with integral coefficients,
which has o rational root b, and k is a fixed positive integer, the
polynomial f(x) + kp is irreducible for all sufficiently large primes
p. If, in addition, f'(h) #0, the polynomial f(x) + kp™ is irreduci-
ble for all sufficiently large prime-power integers p™.

Let h=1t/u, where ¢t and u are integers and #=1, and let »
be the degree of f(x). If

o(x) = u”f<x + i),
u
then
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4
u"f(x —I——u—> + kurpm™ = g(x) £ kunpm,

and g(0) =0. It is therefore sufficient to prove the theorem for
h=0.
If the polynomial

A(x) = f(x) £ kp™ = aoa™ + - -+ + a1  kp™, (@2170),

has a root whose absolute value is <k, then
kpm < | ao B2+ -+ 4| Gaa| .
Hence, if p™ is a prime-power integer greater than
| ao] B4 -+ +] ana],

all the roots of A(x) are >k in absolute value. It follows from
Theorem 1A that A4 (x) is irreducible unless m>1 and p is a
divisor of a,_1.

To treat this case, let p be a prime factor of a,_1, p* the high-
est power of p that divides @,—1, and suppose that A (x) is re-
ducible. With the notation of the proof of Theorem 1, we have

br—lcc + brca—-l = Qp—1,
brcy, = + kpm™.
At least one of the integers b,, ¢, is not divisible by p**i. If b,
has this property,
15| = kap, O0=v=w,
where k; is a divisor of k. Hence

| 6] < & @na.

At least one root 8 of B(x) therefore satisfies the inequality

s (e

On the other hand, by choosing m sufficiently large, the ab-
solute value of every root of A(x) may be made arbitrarily
large. Hence A4 (x) is irreducible for sufficiently large values of
m.

1/r
) < (|kapa| )" < | Rapa|.
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That the condition f/(%) 0 if m >1 is necessary is shown by
the example x»— p™, which is reducible if p is any prime and m
any multiple of z, (n>1).

THEOREM 6. Let

n
A(x) = D ayam
v=0
be a polynomial with integral coefficients. If a, is a power of a
prime which does not divide an—y, and if

O<do<dl"' <dn_1<d,.,
then A(x) is irreducible.

The stated inequalities imply that the absolute value of
every root of A (x) is >1.* The theorem follows from Theorem
1, with k=1,

S. Validity of Preceding Theorems in Other Fields. There are
fields besides the field of rational numbers for which the pre-
ceding theorems are valid. Let R be an algebraic field of class
number 1. The first five theorems are valid if we understand
reducibility to pertain to R and infeger to mean integer of R.
Theorem 6 is valid, with a similar understanding, if the coeffi-
cients of 4 (x) are real numbers.

HuNTER COLLEGE

* See G. Enestrom, Harledning af en allmin formel . . . , Ofversigt af Kongl.
Vetenskaps-Akademiens Férhandlingar, vol. 50 (1893), p. 405-415. French
translation in Téhoku Mathematical Journal, vol. 18 (1920), p. 34. An elegant
proof of Enestrom’s theorem is given by A. Hurwitz, Téhoku Mathematical
Journal, vol. 4 (1914), p. 89.



