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matrices are similar if and only if they belong to the same class. 
Let 

ƒ0) = xn + hxn~l+ h K 

where the k's are rational integers, fen^O, and f(x)~0 has no 
multiple roots. If A is a matric root of f{x) = 0 and is non-de­
rogatory, that is, is not a root of an equation, with rational coef­
ficients, of lower degree, the same is true of every matrix similar 
to A. I t is known that there is a one-to-one correspondence 
between the classes of ideals in a domain of integrity in a cer­
tain commutative semi-simple algebra and the classes of non-
derogatory matrices which are roots of f(x) = 0.* We have there­
fore, by Theorem 1, the following result. 

THEOREM 2. The number of classes of non-derogatory similar 
matrices which are roots of f{x) = 0 is finite. 
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1. Preliminary Discussion. A Kasner convex curve is the 
limit of a sequence of simple, closed, convex polygons, P 0 , * * • , 
P n , • • • , each of which has a finite number of sides and is ob­
tained from the preceding one by measuring off the rth part of 
the length of each side from both its ends and cutting off the 
corners. The number r is restricted to the inequality 0 <r < 1/2. 
To obtain an analytic definition for the curve, we proceed as 
follows. We note that the centroid of the vertices of P 0 is also 
the centroid of the vertices of every Pn. Hence G is interior to 
every Pn. Let zn{t) be the intersection of a ray from G of in­
clination / with the polygon Pn. The sequence of functions 
\zn(t)} will be found to converge uniformly to a function z(t). 

* Latimer and MacDuffee, A correspondence between classes of ideals and 
classes of matrices, Annals of Mathematics, (2), vol. 34 (1933), pp. 313-316. 

t Presented to the Society, February 25, 1933. Another paper will follow 
in which additional properties of these curves will be discussed; particularly 
their second derivatives, their non-analytic character, and their areas. See this 
Bulletin, Abstract 39-3-68. 
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The curve defined by this function for 0 ^ / ^ 27r, is found to be 
simple, closed, continuous, and convex. We shall call this curve 
a Kasner convex curve. The symbol K will be used to represent 
this curve. 

By the M-points of Pn, we shall mean the midpoints of the 
sides of Pn. It is easily verified that : 

1. Every lf-point of Pn is an ikf-point of Pn+i, and hence of 
Pn+p for every positive integral value of p. Consequently, every 
ikf-point of every Pn is a point of K. 

2. If Q is a non- M -point of Pn, a number p exists such that Q 
is exterior to Pn+P> Since every point of K is on or within every 
Pn+-p, it follows that Q is not on K. 

3. The maximum distance between two successive M-points 
of Pn decreases to zero as n increases to infinity. Hence the 
Af-points of all the Pn form a set dense on K. 

If a point is such that it is the vertex of some Pn at which 
the interior angle of that Pn is no greater than a right angle, it 
will be called a point of the set W. Furthermore the set W has 
no other elements. If the set W exists and has limit points, these 
limit points are points on K. In this paper we shall prove the 
following theorems.* 

THEOREM 1. For r ^ 1/3, K has a unique tangent at every point 
which is not a limit point of W. Hence, except at such limit points, 
the inclination of the tangent is continuous. 

THEOREM 2. For 1/3 <r < 1/2, the right-handed and left-handed 
tangents to K at an M-point do not coincide. 

THEOREM 3. For l / 3 < r < l / 2 , if g{i) is the exterior angle be­
tween the tangents to K at M^) which is either an M-point or a 
limit point of W, then Sg( i) = 2x. Hence at all other points, K has a 
unique tangent. The inclination of the tangent is continuous on 
the set on which it is unique. Also, the linear point set whose ele­
ments are the inclinations of the tangents to K {both left-handed 
and right-handed where different) is a non-dense perfect set of zero 
measure. 

2. Tangents at M-points. Let 0 be an .Af-point of Pq. We shall 
use the symbols 0, z0, zQ(2), zQ(3), • • • , z*(t— 1) to represent 

* Some of these results were first obtained by L. Lawrence. See this Bulle­
tin, vol. 39, p. 40, Abstract 39-1-63. 
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the ikf-points of Pq in regular counterclockwise order. Similarly, 
the symbols 0, zn, s»(2), 0»(3), • • • , zn{2nt — 1) will be used to 
represent the ikf-points of Pq+n in regular counterclockwise or­
der. Thus we may write 

Zn(s) = Zn+i(2s). 

That vertex of Pq+n which is included between zn(s— 1) and 
zn(s) will be represented by the symbol wn(s). We shall write wn 

in place of wn(l). Let 0 be the origin of coordinates. We now 
have 

wn+i = (1 — 2r)wny 

(1) ww+1(2) = 2rzn + (1 - 2r)w», 

3 n + l = ~(Wn+l + W„+i(2)) = rZn + (1 — 2f ) Wn . 

Now let 
(1 - 2r)n+1 - (1 - 2r)r" 

iî(fi) = f- ; for r * 1/3, 
(2) 1 — 3r 

£ 0 ) = (1/3)»», forr - 1/3. 

We now prove, by induction on n, the relations 

(3) wn = (1 — 2r)nw0, zw = fw£0 + R(n)w0. 

Henceforth, we shall let OÎ^0 be the x-axis. We shall assume 
that the interior of Pq is above the x-axis. We note that if K has 
a unique tangent at an ikf-point zn(s) of Pq+n, the side (wn(s), 
wn(s + l)), of which zn(s) is the midpoint, must be that tangent. 
Thus K has a unique tangent at 0 only if 

(4) y4 = yl = 0 

at 0. But, setting 

ZnO) = Xn(s) + iyn(s)} Wn(s) = Un(s) + IVn(s), 

we have at 0, 

(5) y+ = lim— = lim ; 
w-*oo xn ŵ oo rnx0 + R(n)u0 

(6) 3;-/ = 0 , a t O , r ^ 1/3. 

0)y4=- T77 I T - ' a t O , r > l / 3 , * = 3 - l / r . 
tf#0 + (1 ~ &)Wo 
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Results similar to (6) and (7) may be obtained for y J at 0. 
Since Pq is an arbitrary polygon of the sequence {Pn} and since 
0 is an arbitrary M-point of Pq, Theorem 2 follows as a conse­
quence of the inconsistency of (4) with (7). We may state also 
the following theorems. 

THEOREM 4. For r ^ l / 3 , K has a unique tangent at every 
M-point. This tangent is the side of Pn of which the M-point is 
the midpoint. An M-point cannot be a limit point of W in this 
case. 

THEOREM 5. For r > l / 3 , the right-handed tangent to K at 0 
divides each of the half-sides w0Zo, • • • , wnzn, • • • in the ratio 
k/(l—k). A similar result holds for the left-handed tangent at 0 
and for the right-handed and left-handed tangents at every M-point. 

3. Tangents at Non-M-points) r ̂  1/3. We shall now complete 
the proof of Theorem 1. Let s be a non-ikf-point of K. For every 
non-negative integer m, there exists an s such that z is on that 
arc (zm(s — 1), zm(s)) of K which is inscribed in the angle at 
wm{s) of Pg-fm. If z is not a limit point of W, we can find an m 
so large that the interior angle of Pq+m at the corresponding 
wm(s) is greater than a right angle. By a proper choice of q and 
O, we can make m = 0, s = l. Hence the interior angle at w0 is 
greater than a right angle. Let 

cn(s) = amp OnO + 1) — wn(s)). 

Now Co, the exterior angle of Pa at w0l is less than a right angle. 
Let a and b} respectively, be the left-handed and right-handed 
tangents to K at z. In virtue of Theorem 4, Theorem 1 will be 
proved if it is shown that a — b for r ^ 1/3. 

Assume a^b. Hence a<b. Now C, the set of all the values 
of the cn(s), has no point interior to the interval (a, &). Let 
(a', b') be the largest subinterval of (0, c0) which contains (a, 6) 
and which is such that none of its interior points are points of C. 
Choose an e such that 

r(b' - a') > e > 0. 

There exists an N so large that the inclinations of a certain pair 
of successive sides of PQ+N differ from a' and b', respectively, by 
less than e. Without any loss of generality, we may assume that 
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N = 0, and that the two sides of Pq whose inclinations differ from 
a' and b' by less than e are the sides which meet at Wo. Hence 

e > a! ^ 0, co ^ V > co - e. 

We now have for every nt either 

(8a) co^Cn^ V 

or 

(8b) € > a' è cn ^ 0. 

We shall prove that if (8a) holds for w = l, (8a) holds for 
every n. Hence, since 

Cn+i = amp zn, 

we shall have at 0 

(9) y+ = lim tan amp zn ^ tan b' > 0. 
n—>oo 

This contradicts (6). Likewise, the assumption that (8b) holds 
for n = 1 leads to a contradiction of Theorem 4 for the left-
handed tangent at zQ. 

Assume (8a) for some n. From triangles (0, wny zn) and 
(0, wn_i, 2n-0, we have 

3>n r sin £n_i sin cn 
t a n ^ n + i = —••' = — • • — ; 

xn r sin cn-i cos cn + (1 — 2r) sin (cn_i — cn) 
r tan cn_i tan cn 

= • > r tan cn > tan e. 
(1 — r) tan cn-i — (1 — 2r) tan cn 

Comparing this result with (8a) and (8b), we conclude that 
(8a) holds for every n if (8a) holds for n = 1. This completes the 
proof of Theorem 1. 

4. Tangents at Non-M-points; r > l / 3 . We shall now proceed 
to prove Theorem 3. Let an(s) and bn(s), respectively, be the in­
clinations of the left-handed and the right-handed tangents to 
K a.tzn(s). Also let 

2n 

qn = £) (0»(s) ~ Ms — 1)). 
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It will suffice to prove that, if CO<T/2, then 

lim qn = 0. 
M-»oo 

Noting that the interior angle of Pq+n at wn(s) is less than either 
of the interior angles of Pq+n+i at wn+i(2s — 1) and wn+i(2s), we 
say that it will suffice to prove that 

(11) qi < eq0, 

where 

e = 1 — k2 cos2 Co, k = 3 — 1/r. 

Let 6(0) be the inclination of the right-handed tangent to K 
at O. Recalling Theorem 5, we write 

k sin c\ sin Co 
tan 6(0) 

(12) 

tan a,\ = 

k sin c\ cos Co + sin (CQ — C\) 

h sin c\ sin c0 

h sin ci cos c0 + sin (c0 — £i) 
where 

1 > h = r / ( ( l - 2r)k + r) = 1/((1 ~ *)* + 1) > * > 0, 

tan c\ — tan a,\ 1 — h tan c0 — (1 — k) tan ci 
(13) - — = - > k\ 

tan ci — tan 6(0) 1 — k tan Co — (1 — A) tan a 
Applying the law of the mean, we get 

c\ — d\ > cos2 c0(tan c\ — tan #0, 

(14) a - 6(0) < tan cx - tan 6(0), 

ai - j (0) = (Cl - 6(0)) - (a - ai) < «(d - 6(0)). 

Likewise 

#o — 6i < e (a i — Ci). 

Adding, we get 

(15) (ai - 6(0)) + (a0 - 60 < e(flx - 6(0)), 

which is precisely (11). 
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