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matrices are similar if and only if they belong to the same class.
Let

f(®) = am + k14 - - -+ by,

where the k’s are rational integers, k,7#0, and f(x) =0 has no
multiple roots. If 4 is a matric root of f(x) =0 and is non-de-
rogatory, that is, is not a root of an equation, with rational coef-
ficients, of lower degree, the same is true of every matrix similar
to A. It is known that there is a one-to-one correspondence
between the classes of ideals in a domain of integrity in a cer-
tain commutative semi-simple algebra and the classes of non-
derogatory matrices which are roots of f(x) =0.* We have there-
fore, by Theorem 1, the following result.

THEOREM 2. The number of classes of non-derogatory similar
matrices which are roots of f(x) =0 is finite.
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1. Preliminary Discussion. A Kasner convex curve is the
limit of a sequence of simple, closed, convex polygons, Py, - - -,
P,, - - -, each of which has a finite number of sides and is ob-
tained from the preceding one by measuring off the rth part of
the length of each side from both its ends and cutting off the
corners. The number 7 is restricted to the inequality 0 <r <1/2,
To obtain an analytic definition for the curve, we proceed as
follows. We note that the centroid of the vertices of P, is also
the centroid of the vertices of every P,. Hence G is interior to
every P,. Let 2,.(f) be the intersection of a ray from G of in-
clination ¢ with the polygon P,. The sequence of functions
{2.(2)} will be found to converge uniformly to a function z(f).

* Latimer and MacDuffee, 4 correspondence between classes of ideals and
classes of matrices, Annals of Mathematics, (2), vol. 34 (1933), pp. 313-316.

1 Presented to the Society, February 25, 1933. Another paper will follow
in which additional properties of these curves will be discussed; particularly
their second derivatives, their non-analytic character, and their areas. See this
Bulletin, Abstract 39-3-68.
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The curve defined by this function for 0 <¢< 2w, is found to be
simple, closed, continuous, and convex. We shall call this curve
a Kasner convex curve. The symbol K will be used to represent
this curve.

By the M-poinis of P,, we shall mean the midpoints of the
sides of P,. It is easily verified that:

1. Every M-point of P, is an M-point of P,,1, and hence of
P, for every positive integral value of p. Consequently, every
M-point of every P, is a point of K.

2. If Q is a non-M-point of P,, a number p exists such that Q
is exterior to P,,. Since every point of X is on or within every
P.yp, it follows that Q is not on K.

3. The maximum distance between two successive M-points
of P, decreases to zero as % increases to infinity. Hence the
M-points of all the P, form a set dense on K.

If a point is such that it is the vertex of some P, at which
the interior angle of that P, is no greater than a right angle, it
will be called a point of the set W. Furthermore the set W has
no other elements. If the set W exists and has limit points, these
limit points are points on K. In this paper we shall prove the
following theorems.*

THEOREM 1. For r=1/3, K has a unique tangent at every poini
which is not a limit point of W. Hence, except at such limit points,
the inclination of the tangent is continuous.

THEOREM 2. For 1/3 <r <1/2, the right-handed and left-handed
tangents to K at an M-point do not coincide.

THEOREM 3. For 1/3<r<1/2, if gu, is the exterior angle be-
tween the tangents to K at My which is either an M-point or a
limit point of W, then Zg;y =2w. Hence at all other points, K has a
unique tangent. The inclination of the tangent is continuous on
the set on which it is unique. Also, the linear point set whose ele-
ments are the inclinations of the tangents to K (both left-handed
and right-handed where different) is a non-dense perfect set of zero
measure.

2. Tangents at M-points. Let O be an M-point of P,. We shall
use the symbols O, 2o, 20(2), 26(3), - - -, 20({—1) to represent

* Some of these results were first obtained by L. Lawrence. See this Bulle-
tin, vol. 39, p. 40, Abstract 39-1-63.
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the M-points of P, in regular counterclockwise order. Similarly,
the symbols O, 2,, 2.(2), 2.(3), - - -, 2.(27#—1) will be used to
represent the M-points of P4y, in regular counterclockwise or-
der. Thus we may write

2n(5) = 2a11(25).

That vertex of P,., which is included between 2,(s—1) and
2.,(s) will be represented by the symbol w,(s). We shall write w,
in place of w,(1). Let O be the origin of coordinates. We now
have

Wnt1 = (1 - 21‘)7,0,,,

1) . Wor1(2) = 272, + (1 — 27)w,,
Zngl = 5(wn+l + wo1(2)) = 1z, + (1 — 29)w,.

Now let
(1 =277 — (1 — 27)r»

@ R(n) = P s forr#1/3,
R(n) = (1/3)"n, forr = 1/3.

We now prove, by induction on #, the relations

3) w, = (1 — 2r)"w,, 2, = r"2 + R(n)w,.

Henceforth, we shall let Ow, be the x-axis. We shall assume
that the interior of P, is above the x-axis. We note that if K has
a unique tangent at an M-point 3,(s) of Pgin, the side (w.(s),
w,(s+1)), of which z,(s) is the midpoint, must be that tangent.
Thus K has a unique tangent at O only if

@ v =9l =0
at O. But, setting
2a(s) = %a(s) + 1ya(s), W, (s) = un(s) + 1v.(s),

we have at O,

Yn )
5 / =lim~—=lm————,
) ¢ n—we X, n-wo "%+ R(n)u,
6) v/ =0, at 0,r = 1/3.
k
) v, = A at0,r>1/3, k=3 — 1/r.

kxo + (1 - k)uo ’
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Results similar to (6) and (7) may be obtained for y_’ at O.
Since P, is an arbitrary polygon of the sequence {Pn} and since
O is an arbitrary M-point of P,, Theorem 2 follows as a conse-
quence of the inconsistency of (4) with (7). We may state also
the following theorems.

TueorREM 4. For r=<1/3, K has a unique tangent at every
M-point. This tangent is the side of P, of which the M-point is
the midpoint. An M-point cannot be a limit point of W in this
case.

THEOREM 5. For v>1/3, the right-handed fangent to K at O
divides each of the half-sides wq2o, + -+, Wn2n, - - - 10 the ratio
k/(1—Fk). A stmilar result holds for the left-handed tangent at O
and for the right-handed and left-handed tangents at every M-point.

3. Tangents at Non-M-points; r =1/3. We shall now complete
the proof of Theorem 1. Let z be a non-M-point of K. For every
non-negative integer m, there exists an s such that z is on that
arc (2m(s—1), 2a(s)) of K which is inscribed in the angle at
Wm(s) of Pyym. If 2 is not a limit point of W, we can find an m
so large that the interior angle of P,., at the corresponding
wn(s) is greater than a right angle. By a proper choice of ¢ and
0O, we can make m =0, s=1. Hence the interior angle at w, is
greater than a right angle. Let

Cn(s) = amp (wn(s + 1) - ‘ZJZ),,(S))

Now ¢y, the exterior angle of P, at w,, is less than a right angle.
Let @ and b, respectively, be the left-handed and right-handed
tangents to K at 2. In virtue of Theorem 4, Theorem 1 will be
proved if it is shown that ¢ =b for r<1/3.

Assume a#b. Hence a <b. Now C, the set of all the values
of the ¢,(s), has no point interior to the interval (a, b). Let
(a’, ") be the largest subinterval of (0, ¢o) which contains (a, b)
and which is such that none of its interior points are points of C.
Choose an € such that

r(d' — d') > e > 0.

There exists an N so large that the inclinations of a certain pair
of successive sides of P,,n differ from &’ and b’, respectively, by
less than e. Without any loss of generality, we may assume that
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N =0, and that the two sides of P, whose inclinations differ from
e’ and b’ by less than e are the sides which meet at w,. Hence

e>a'%0, Cogb,>60—6.

We now have for every #, either

(8&) Co g Cn g b,
or
(8b) e>a 2¢, 20.

We shall prove that if (8a) holds for =1, (8a) holds for
every n. Hence, since

Cny1l = amMp 2,
we shall have at O

9) y{ = lim tan amp z, = tan ' > 0.
n— 0

This contradicts (6). Likewise, the assumption that (8b) holds
for n=1 leads to a contradiction of Theorem 4 for the left-
handed tangent at 2.

Assume (8a) for some #z. From triangles (O, w,, 2.) and
(O, Wn_1, 21-1), We have

Yn 7 sin ¢,_1 sin ¢,

tan ¢4 = — = — -
(10) Xn 7SN Cyeq €08 ¢n + (1 — 27) sin (cpe1 — Cn)

r tan ¢, tan ¢,
= > rtanc, > tane.
(1 —7)tancuy — (1 — 27) tanc,

Comparing this result with (8a) and (8b), we conclude that
(8a) holds for every # if (8a) holds for n=1. This completes the
proof of Theorem 1.

4. Tangents at Non-M-points; r >1/3. We shall now proceed
to prove Theorem 3. Let a,(s) and b,(s), respectively, be the in-
clinations of the left-handed and the right-handed tangents to
K at 2,(s). Also let

gn = ; (an(s) — ba(s — 1)).
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It will suffice to prove that, if co<w/2, then
lim ¢, = 0.

n—

Noting that the interior angle of Py, at w,(s) is less than either
of the interior angles of Pyyny1 at wa1(25—1) and way1(2s), we
say that it will suffice to prove that

(11) 71 < eqo,
where
e =1 — k2 cos? ¢, k=3—1/r.

Let 5(0) be the inclination of the right-handed tangent to K
at 0. Recalling Theorem 5, we write

k sin ¢y sin ¢

tan 5(0) = — . )
(12) k sin ¢; cos ¢o + sin (co — ¢1)
)  sin ¢ sin ¢
tan g, = - - ’
h sin ¢y cos ¢y + sin (co — ¢1)
where

1>hb=r/(A=2nk+7r)=1/(01 —kKE+1)>Fk >0,
tan ¢; — tan a, _l—h tanco — (1 — k) tan ¢

tan ¢; — tan 5(0) 1 —k tanco — (1 — k) tan ¢;

k2.

(13)

Applying the law of the mean, we get

c1 — a1 > cos? ¢o(tan ¢; — tan ay),
(14) ¢ — b(0) < tan ¢; — tan 5(0),

ar — b(0) = (c1 — b(0)) — (c1 — @) < elcy — b5(0)).
Likewise

ao — b1 < e(ar — c1).

Adding, we get
(15) (a1 = 8(0)) + (a0 — b1) < e(ar — 5(0)),
which is precisely (11).
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