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A COMPLETE CENSUS OF 4 X 4 MAGIC SQUARES* 

BY D. N. LEHMER 

A complete enumeration of magic squares of order 3 is easy 
to make and the result turns out to be 72. In this enumeration 
two squares are considered different if they do not have the 
same numbers in corresponding cells. In this and in the study of 
4 X 4 squares we define a magic square as one in which the ele­
ments in every row and column add up to the same sum, this 
sum being given for the square of order n by the formula 

n(n2 + l) 

' 2 ' 

With this definition a magic square remains magic after any 
permutation of the rows among themselves, or of the columns 
among themselves, or by an interchange of rows and columns. 
This associates with any magic square a set of 2(nl)2 squares 
all of which are magic. 

By a permutation of the rows and columns of any square the 
largest entry in the square may be transferred to any particular 
cell ; in particular it may be placed in the lower left hand corner. 
The other rows and columns may then be permuted so that the 
entries in the bottom line and in the left hand column read in 
descending order of magnitude. Also by an interchange of rows 
and columns, if necessary, the element in the bottom row next 
to the left hand corner may be made larger than the element in 
the left hand column which is next above the left hand corner. 
No further adjustments are then possible and the square will be 
said to be normalized. Thus the square 
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* Presented to the Society, November 29, 1929, and June 23, 1933. 
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It is clear that two normalized squares which do not agree 
entry for entry can not be transformed one into the other by any 
permutations of rows or of columns, or by interchange of rows 
and columns. To find the total number of squares of order n all 
we need to find is the number of normalized squares. This num­
ber, multiplied by 2(nl)2 will give the total number of squares 
for that order. 

To exhibit the method used in the discussion of 4 X 4 squares 
we derive the normalized squares of order three. The sum in each 
row and column must be 15. We assume the entry 9 in the lower 
left hand corner. The other two entries in the bottom row and 
in the left hand column must add to 15—9 = 6. The only par­
titions of 6 obtainable from the numbers 1, 2, 3, 4, 5, 6, 7, 8, the 
numbers in the partition being distinct, are 5 + 1 and 4 + 2. For 
the normalized square, therefore, we must write the bottom 
row 9, 5, 1 and the left hand column 9, 4, 2. This leaves only the 
numbers 3, 6, 7, 8 with which to complete the square. The two 
remaining numbers in the second column must add to 10, and 
the two in the second row to 11. The only partition of 10 avail­
able is 7 + 3 and the only partition 11 available is 8 + 3. This 
indicates that the cell in which these two lines intersect must be 
filled with the number 3. We get thus the single normalized 
square of order 3 to be 

2 7 6 

4 3 8 

9 5 1 

All other magic squares of order 3 are therefore obtainable from 
this single one by permutation of its rows and columns and by 
interchanging its rows and columns. The number of such trans­
formations being 2(3!)2 = 72, the total number of magic squares 
of order 3 is therefore 72. 

For the 4 X 4 squares the magic sum is 34. After placing 16 in 
the lower left hand corner the sum of the three remaining num­
bers in the first row and in the first column must be 34 —16 = 18. 
There are 19 partitions of 18 using the numbers from 1 to 15, if 
the numbers in the partitions are assumed distinct as they are 
in this case. They are (15, 2, 1), (14, 3, 1), (13, 4, 1), (12, 5, 1), 
(11, 6, 1), (10, 7, 1), (9, 8, 1), (13, 3, 2), (12, 4, 2), (11, 5, 2), 
(10, 6, 2), (9, 7, 2), (11, 4, 3), (10, 5, 3), (9, 6, 3), (8, 7, 3), 
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(9, 5 ,4) , (8, 6, 4) and (7, 6, 5). Every normalized magic square 
must then have one of these triads for the numbers (besides the 
number 16) in its first row and in its first column. Moreover 
having selected a triad for the bottom row the triad for the first 
column must be made up of numbers distinct from those in the 
triad first selected, and the largest number in it must be smaller 
than the largest number in the chosen triad. Thus starting with 
the triad (15, 2, 1) all the above triads which contain 1 or 2 
are not available and there are only seven left, namely, (11, 4, 3), 
(10, 6, 2), (9, 6, 3), (8, 7, 3), (8, 6, 4), (7, 6, 5). Similarly for the 
other choices of the triad in the bottom row. It is observed that 
no triad for the column can be used with a triad chosen for the 
bottom row if it precedes it in the above list. Thus, for example, 
for the triad (10, 7, 1), as a choice for the bottom row we can 
use only three triads (9, 6, 3), (9, 5, 4), (8, 6, 4), and for the 
triad (9, 5, 4) there is only one available: (8, 7, 3). 

These combinations of triads in the bottom line with triads 
in the first column (67 in all) must each be examined for possible 
magic squares. The method is analogous to the one used in the 
above discussion for 3X3 squares and will be clear from the 
example of the first case in which we have the triad (15, 2, 1) 
for the bottom row and (11, 4, 3) for the first column. These 
triads use up the numbers 1,2, 3, 4, 11,15 and 16. The remain­
ing numbers are 5, 6, 7, 8, 9, 10, 12, 13, 14. Out of these a triad 
must be selected for the second column which shall give a sum 
34 — 15 = 19. The only such is (8, 6, 5). A triad must also be 
selected for the second row with a sum 23. The only ones are 
(12, 6, 5), (10, 8, 5), (10, 7, 6), (9, 8, 6). But the vertical column 
and the horizontal row must have one and only one element in 
common. This rules out of consideration the 1st, 2d and 4th 
of the above triads, and we have left only the triads (8, 6, 5) 
and (10, 7, 6) to consider, with the common element 6 which 
must therefore be located in the intersection cell. The other 
elements must then be suitably placed and the result is the two 
squares : 

3 8 9 14 3 5 12 14 

4 5 13 12 4 8 13 9 
and 

11 6 10 7 11 6 7 10 

16 15 2 1 16 15 2 1 
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The discussion for the other cases may be made in the same 
way. The following table gives for each bottom line triad the 
set of triads available for the first column, the subscript indi­
cating the number of squares obtained from that particular 
choice of triads. 

ot tom 
line 

triads Available first column triads 

(15, 2, 1) (11, 4, 3)2) (10, 5, 3)n, (9, 6, 3 ) u , (9, 5, 4) n , (8, 7, 3),, 

(8, 6, 4)3, (7, 6, 5)4. 

(14, 3, 1) (12, 4, 2)3, (11, 5, 2)13, (10, 6, 2)7, (9, 7, 2 ) u , (9, 5, 4)M, 

(8, 6, 4)2, (7, 6, S)i. 

(13, 4, 1) (11, 5, 2)14, (10, 6, 2),, (10, 5, 3)10, (9, 7, 2 ) u , (9, 6, 3)14, 

(8, 7, 3)6, (7, 6, 5)2. 

(13, 3, 2) (12, 5, 1)M, (11, 6, 1)„, (10, 7, l ) u , (9, 8, 1)„, (9, 5, 4)7, 

(8, 6, 4)6, (7, 6, 5)o. 

(12, 5, 1) (11, 4, 3)8, (10, 6, 2)„ (9, 7, 2)20, (9, 6, 3)„, (8, 7, 3)„ 

(8, 6, 4)2 . 

(12, 4, 2) (11, 6, 1)4) (10, 7, 1),, (10, 5, 3)4, (9, 8, 1)2, (9, 6, 3)1; 

(8, 7, 3)o, (7, 6, 5)o. 

(11, 6, 1) (10, 5, 3)i«, (9, 7, 2)„, (9, 5, 4)14, (8, 7, 3),. 

(11, 5, 2) (10, 7, 1)14, (9, 8, 1)„, (9, 6, 3),, (8, 7, 3)„, (8, 6, 4) , . 

(11, 4, 3) (10, 7, 1)3, (10, 6, 2)1; (9, 8, 1)4, (9, 7, 2)0, (7, 6, 5)0. 

(10, 7, 1) (9, 6, 3)14, (9, 5, 4)u, (8, 6, 4)x . 

(10, 6, 2) (9, 8, 1),, (9, 5, 4)2, (8, 7, 3)x. 

(10, 5, 3) (9, 8, 1)13, (9, 7, 2)7, (8, 6, 4)0 . 

(9, 8, 1) (7, 6, 5)8. 

(9, 7, 2) (8, 6, 4)7 . 

(9, 5, 4) (8, 7, 3)6. 

I t is seen that there are in all 468 normalized squares of order 
4, and multiplying this number by 2(4!)2 = 1152, we get for the 
total number of magic squares of order 4 the number 539,136. 
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