ON THE NUMBER OF APPARENT DOUBLE POINTS ON A CERTAIN V_k^n IN AN S_{2k+1}

BY B. C. WONG

Consider a k-dimensional variety, V_{k}^{n} , of order n which is the locus of a single infinity of (k-1)-spaces in an S_{2k+1} . It is known that such a V_{k}^{n} , if it is rational, that is, if its section by a general S_{k+2} of S_{2k+1} is a rational curve, has*

$$b_k = \frac{1}{2}(n-k)(n-k-1)$$

apparent double points. † The question arises: What is the value of b_k when V_k^n is not rational? The case k=1 is familiar; a curve of order n in an S_3 has

(1)
$$b_1 = \frac{1}{2}(n-1)(n-2) - p$$

apparent double points, where p is the deficiency of the curve. It is also known that, for k=2, the number of apparent double points on a ruled surface F^n of order n in an S_5 is \ddagger

(2)
$$b_2 = \frac{1}{2}(n-2)(n-3) - 3p,$$

where p is the deficiency of the curve of intersection of F^n by a general S_4 of S_5 . For k > 2, the number b_k of apparent double points of a V_k^n in an S_{2k+1} seems to be as yet unknown. It is our purpose in this note to derive a formula for this number.

Now let V_k^n be intersected by a general S_{k+2} of S_{2k+1} in a curve C^n of deficiency p. If p>0, we say that V_k^n is not rational. We shall say that p is also the deficiency of V_k^n and shall regard n and p as the two essential characteristics of the variety as all its other characteristics can be expressed in terms of them for a

^{*} B. C. Wong, On the number of (q+1)-secant S_{q-1} 's of a certain V_k^n in an $S_{qk+q+k+1}$, this Bulletin, vol. 39, pp. 392-394.

[†] By an apparent double point of a V_k^n we mean a secant line of V_k^n passing through a given point of S_{2k+1} . The projection in an S_{2k} of V_k^n will have b_k improper double points each of which is the projection of an apparent double point of V_k^n .

[‡] Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a'suoi punti tripli apparenti, Rendiconti di Palermo, vol. 15 (1901), pp. 33-51.

given value of k. Then the formula for b_k must be a function of n and p, and of k also.

Consider the ruled surface F^n in which V_k^n is met by a general S_{k+3} of S_{2k+1} . The projection of F^n , if it is in an S_5 , has b_2 , given by formula (2), apparent double points; and, if it is in an S_3 , has a double curve of order b_1 given by formula (1). On this double curve lie a finite number, j_1 , of pinch points. This number is known and will be given subsequently.

Next, consider the planed variety V_3^n common to V_k^n and a general S_{k+4} of S_{2k+1} . The projection in an S_7 of this V_3^n has b_3 apparent double points. Projecting this projection successively upon an S_6 , an S_5 , and an S_4 , we see that the resulting variety in S_6 has b_3 improper double points; that the one in S_5 contains a double curve of order b_2 upon which lie j_2 pinch points; and, finally, that the one in S_4 contains a double surface of order b_1 upon which lies a pinch curve of order j_1 .

In general, an $S_{k+h+1}(k \ge h > 0)$ of S_{2k+1} meets V_k^n in a V_h^n which is the locus of a single infinity of (h-1)-spaces. Now if we let V_h^n be projected upon an S_{2h-i} , $(i=0, 1, \dots, h-1)$, of S_{k+h+1} , then we have for projection an h-dimensional variety of order n with a double i-dimensional variety of order b_{h-i} and an (i-1)-dimensional pinch variety of order j_{h-1} lying on the double variety. If i=0, the projection in S_{2h} has b_h improper double points.

Suppose h = k, and then we have the given V_k^n itself. A general S_{2k-i} -projection of this V_k^n contains a double *i*-dimensional variety of order b_{k-i} upon which lies an (i-1)-dimensional variety of order j_{k-i} .

In order to determine b_k we find it necessary to determine b_h . This determination will be much facilitated if we make use of the two following results already known.

(A) The characteristics $b_0, b_1, \dots, b_k; j_0, j_1, \dots, j_{k-1}$ of any V_k^n in r-spaces satisfy the relations*

^{*} B. C. Wong, On certain characteristics of k-dimensional varieties in r-space, this Bulletin, vol. 38, pp. 725-730. The notations used in this paper are slightly different from those adopted in the present work.

$$= 2b_1 - j_{h-1} - j_{h-2} - \cdots - j_1$$

= $2b_0 - j_{h-1} - j_{h-2} - \cdots - j_1 - j_0$.

Here b_0 is to be taken equal to $n(n-1)/2^*$ and j_0 is the rank of the curve C^n common to V_{k^n} and an S_{k+2} .

(B) The number of pinch points on the double curve of a V_h^n which is the locus of a single infinity of S_{h-1} 's in an S_{2h-1} is \ddagger

$$j_{h-1} = 2(n - h + hp).$$

Combining these two results, we find that

$$b_h = b_0 - (1/2) \sum_{i=0}^{h-1} j_i$$

= $(n-h)(n-h-1)/2 - k(k+1)p/2$.

If h = 1 and 2, we have formulas (1) and (2), respectively. For h = k, we have

$$b_k = (n-k)(n-k-1)/2 - k(k+1)p/2$$

as the number of apparent double points on a V_k^n which is the locus of a single infinity of S_{k-1} 's in an S_{2k+1} and this is the number it was our purpose to determine.

THE UNIVERSITY OF CALIFORNIA

^{*} If we define b_h as the number of secant lines of a V_h^n of an S_{2h+2} that meet a given line of S_{2h+2} , we see that b_0 is the number of lines determined by n given points in a plane.

[†] We may define j_{h-1} as the number of tangent lines of a V_h^n of an S_{2h} that pass through a given point of S_{2h} . Then, j_0 is the class of a plane curve which is the plane projection of the curve C^n of intersection of V_h^n and an S_{k+2} .

[‡] B. C. Wong, On the number of stationary tangent S_{t-1} 's to a V_k in an S_{tk+k-1} , this Bulletin, vol. 39, pp. 608-610.