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ON EULER'S TOTIENT FUNCTION 
BY D. H. LEHMER* 

In this note we discuss the equation 

(1) k<j>(n) = n - 1, 

where k is an integer, and <t>{n) is Euler's totient function, giving 
the number of integers <n and prime to n. Our main purpose is 
to show that if n is a solution of (1), then n is a prime or the 
product of seven or more distinct primes. One is tempted to be­
lieve the stronger statement that (1) has no composite solutions 
or, in other words, the integer n is a prime if (and only if) cj>(n) 
divides n — 1. We have not been able to establish this, however. 
The proof of the nonexistence of composite solutions of (1) seems 
about as remote as the proof of the nonexistence of odd perfect 
numbers and the two problems though not equivalent are not 
dissimilar. 

Let w b e a composite solution of (1) and let a be any number 
prime to n\ then 

an-\ = (y(n))& == i (modn), 

so that n furnishes an example of the failure of the strict con­
verse of Fermâtes theorem for all values of a prime to n. This 
involves no contradiction, however. In fact a560 = 1 (mod 561), 
for all a's prime to 561, although 561 = 3 11 17. 

Together with (1) we shall consider the equation 

(2) k<t>{n) = n + 1, 

and show that it has exactly eight solutions if n has less than 
seven distinct prime factors. The case k = 1 may be dispensed 
with since (2) has no solutions and (1) has a solution n, if and 
only if n is a prime. We first give a number of necessary condi­
tions which any solution n of (1) or (2) must satisfy. 

THEOREM 1. If n > 2, then n is a product of distinct odd primes. 

PROOF. From equations (1) and (2) it is obvious that n must 
be prime to </> (n), and since </> (n) is even for n>2,n must be odd. 
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Also if n contained a square of a prime, 4>{n) would be divisible 
by this prime. Hence n is a product of distinct odd primes. 

We note in passing that n~2 is a solution of (1) or (2) with 
& = 1, and k = 3 respectively, and in what follows we shall there­
fore suppose that n>2 and hence odd. 

THEOREM 2. If pis a factor of n, then n contains no prime factor 
of the f or m px-\-\. 

PROOF. In fact if p and px + 1 were prime factors of n, then 
n and <t>(n) would have a factor p in common. 

THEOREM 3. If n is composite, it is a product of an even or odd 
number of prime factors of the form 4x —• 1, according as it is a 
solution of (1) or (2). 

PROOF. This theorem follows from the fact that </>(n) and 
hence n± 1 must be a multiple of 4. 

From Theorem 1 we can write 

n = pip2p3 • • • pt, 

where the #'s are distinct odd primes, and we will suppose that 

2 < pi < p2 < ' ' ' < pt. 

We now consider solutions of (1) and (2) for different values 
of *. 

CASE I. t = \. This case is easily disposed of. Since n is a 
prime, it is a solution of (1) only with k = l. Equation (2) be­
comes 

\{n - i) = n + i or (k - 1 ) 0 - 1) = 2. 

Hence the only solutions are n = 2, k = 3 and n = 3, & = 2. 
CASE II . t = 2. This case is also quite simple. When n=pip2l 

(1) becomes 

1 1 
Hpi - 1)(#2 - 1) = Pip2 - 1 or * - 1 = + • 

# 1 — 1 # 2 — 1 

Hence 0<k — 1 ^ + J < 1 , which is impossible since k — 1 is an 
integer. The equation (2) for this case becomes 

1 1 2 
0 < k - 1 = 1 h r > 

Pi - 1 # 2 - 1 (#i - 1)(#2 - 1) 
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the only solution being £i = 3, £2 = 5, since & - - K 1 when at 
least one prime exceeds 5. 

Before proceeding to larger values of t we show that we can 
confine ourselves to the case k = 2. 

THEOREM 4. If 2 < / ^ 6 , then & = 2. 
PROOF. Solving (1) and (2) for k we have 

É= n—^—±— 

But since / ^ 3 , « ^ 1 0 5 , and 0 (w)â48 . Also since / ^ 6 

3 5 7 11 13 17 1 5715 
k £ + — = < 3. 

2 4 6 10 12 16 48 2048 
The somewhat wasteful inequalities used above may be consid­
erably sharpened if necessary. The following will illustrate. 

THEOREM 5. If nis a solution of (1) or (2) for & = 3, then n is a 
product of more than 32 distinct prime factors. 

PROOF. Since n is prime to k = 3, the smallest prime factor of 
n is ^ 5 . By Theorem 4, t>6, so t h a t » ^ 5-7-11-1317-19-23, 
so that 0(») à 18247680. Then 

or 

but 

i-i ƒ>»• - 1 <t>{n) 

1 Pi 1 
TT — > 3 > 2.99; 
ti pi - 1 18247680 

n 
5-7-11 • • -qt 

ITt, 
i f pi - 1 4-6-10- -{qt- 1) 

where qt is the /th prime > 3 . Hence 

in > 2.99. 

Referring to Legendre's table* we see that <^>139 or t>32, 
which proves the theorem. 

THEOREM 6. If 2<t^6, then n is a multiple of 15. 

* Théorie des Nombres, vol. 1, 3d edition, Table I X ; see also Glaisher, 
Messenger of Mathematics, vol. 28, p. 2. 
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PROOF. First suppose that n is prime to 3; then w = 5 -7- l l 
so that 

5 7 11 13 17 19 1 324091 
kg + = < 2, 

4 6 10 12 16 18 4-6-10 184320 
which is absurd. Hence n is a multiple of 3. By Theorem 2, n 
contains no prime factor of the form 3# + l. Suppose now that n 
is not divisible by 5; then n^3-11 17 and <j>(n) ^480. 

3 11 17 23 29 41 1 4184731 
kg + = < 2. 

2 10 16 22 28 40 480 2150400 
Hence the theorem. With this information we can dispose of 
the case / = 3 using the following lemma. 

LEMMA 1. If n0 is a solution of (2) and if p is any prime, then 
I. n = n0p is not a solution of (1) ; 

II . n — n^p is a solution of (2) if ana only if no-\-2=p. 

PROOF. In order that n0p be a solution of (1) or (2) 

k(f>(n)=k<l>(nop)=k(l>(no)(p- 1) = O o + l ) ( £ - l)=nQp± 1. 

Hence p = noor p = n0 + 2. The lemma follows since, by Theorem 
1, p9^n0. 

CASE II I . t = 3. By Theorem 6, n = 15p. But 15 is a solution 
of (2) ; hence, by Lemma 1, (1) has no solutions and (2) has the 
single solution n = 3-5• 17 = 255. For / = 4, 5, 6, we prove the 
following lemma. 

LEMMA 2. If k</>(in) =m+a, and if p and q are primes for 
which 

(3) k<j>{mpq) = mpq + e, 

then 

(4) (ap — m — a)(aq — m — a) — (w2 + am + ae) = 0. 

PROOF. Multiplying out the expression (4) and adding and 
subtracting ampq we obtain 

a {(m + a) (p — 1) (q — 1) — mpq — e} = a { k(j>(mpq) — mpq — e}. 

But from (3) this is zero, hence the lemma. 
Solving (4) for p— 1 we obtain 
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mq + e 
(4r) p - 1 = -

aq — k(j)(m) 
CASE IV. / = 4. From Theorem 6, n = 15£g, p<q. Using 

Lemma 2 with m = 15, a = l, we get from (4) 
(p - 16) (q - 16) = 240 + e. 

For equation (1), €= — 1. Since 239 is a prime, £ — 16 = 1, and 
q —16 = 239 or g = 255, not a prime. For equation (2) e = + l . 
Since 241 is a prime, £ — 16 = 1 and g —16 = 241 or £ = 17 and 
g = 257 gives a solution « = 3 • 5 • 17 • 257. 

CASE V. t = 5. Writing n in the form n = 3 • 5 • £gr, we first show 
that p< 53. Making use of Theorem 2 and supposing that £i= 53, 
we find 

3 5 53 59 83 1 973279 
k^ + = < 2. 

2 4 52 58 82 2-4-52-58-82 494624 
Hence £ < 5 3 . By Theorem 2, £ = 17, 23, 29, or 47. Writing 
ra = 3-5-£ we apply Lemma 2. Thus a = 24>(m) — m = l, 7, 13 
or 31. For €= — 1 equation (4) becomes, for these various cases, 

(5) (q - 256)(r - 256) = 65279 = 29-2251, 

(6) (7q - 3S2)(7r - 352) = 121433 = 13-9341, 

(7) (13? - 448) (13r - 448) = 194867 = prime, 

(8) (31q - 736)(31r - 736) = 518849 = 211-2459. 

Since q<r, equation (5) implies (g — 256) = 1 or 29, and r — 256 
= 65279 or 2251. In the first case r is divisible by 5 and in the 
second case the same is true of q. Hence (5) has no solution 
(£, q) in primes. Taking (6), (7), and (8) modulo 7, 13, and 31, 
respectively, we see that these equations have no solutions, even 
in integers. For e = + l the right sides of (5), (6), (7), and (8) 
become 65281=97-673, 121447 = prime, 194893 = 79-2467, and 
518911 =prime. The first of these implies 

(q - 256 = 1 , (q- 256 = 97, 

\r - 256 = 65281, 0 r \r - 256 = 673, 

so that g = 257, r = 65537 or g = 353, r = 929 are solutions of (2). 
The other three equations are not solvable in integers. For Case 
V, then, there are no solutions of (1) and a pair of solutions of 
(2), namely 
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n = 3-5-17-257-65537 = 232 - 1 = 4294967295, 

n = 3-5-17-353-929 = 83623935. 

CASE VI. / = 6. This case involves so many trials that space 
can be given to only a brief account of the work. We find as 
before that n = 3-5-pqrs, where £ = 17, 23, 29, or 47. We shall 
first discuss the case £ = 17. In this case we can prove that 
g = 257. In fact if q <257, then by Theorem 2, g = 239 since 241 
and 251 are of the form 5x + l. Hence 

3 5 17/239V 1 217577459 
k > ( ) = > 2, 

2 4 16X238/ 2-4-16(238)3 107496151 
contrary to Theorem 4. Hence g = 257. First let q = 257 and ap­
ply Lemma 2 with ra = 3-5-17-257, a = l. For e= - 1 , (4) be­
comes (V-21 6)O-21 6)=4294901759 = 1 9 1 8 M 2 4 8 8 8 1 . Hence 
r = 65555, 65717, or 68975. But r is a prime. Therefore r can 
only be 65717. But this gives 5 = 23794275 which is not a prime. 
Hence (1) has no solution of the form n = 3-S-17-257-rs. For 
c = + l , equation (4) becomes 

O - 216)0 - 216) = 4294901761 = 193-22253377. 

Hence s =4294967297 = 22B + 1 =641-6700417, or 

s = 22318913 = 3037-7349. 

In neither case is 5 a prime. Hence (2) has no solution of the 
form 3-5-17-257-rs. We next let g = 263 and obtain 

(7r - 67072)(7s - 67072) 

f 4498183673 = 2731•1647083 

fore = — 1, 

4498183687 = 60337-74551 

f or e = + 1. 

Again there is no solution. The same results are obtained for 
g = 293, 317,347. For g = 353 we get 

f 4706165747 = prime 

(97r - 90122)(97s - 90122) = 
for e = — 1, 

4706165773 = 6577-715549 

fore = + 1. 
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For e=— 1, 5 = 83623935 is not a prime. For e = + l we find 
r = 929, 5 = 83623937, both being prime numbers. Hence (2) has 
the solution* 

n = 3 • 5 • 17 • 353 • 929 • 83623937 = 6992962672132095. 

The same method shows that neither (1) nor (2) has a solution 
for q = 359 or 383. 

It now becomes much easier to consider equation (4') written 
in the form 

255qr + e 
(9) s - 1 = , 

(q - 256)r - 256(g - 1) 
where q is a fixed prime and r varies over primes between such 
limits as to make the denominator of (9) positive and still have 
5 >r. By actual trial division the successive values of r are elimi­
nated very rapidly. No further solutions of (1) and (2) of the 
form 3-5-17-grs exist. The cases p = 23, 29 and 47 were dealt 
with by means of (4') and no solutions of (1) and (2) were found. 

Summing up, we have shown that (1) has no composite solu­
tions involving fewer than 7 distinct prime factors while we have 
found the following solutions of (2) : 

2, 3, 3-5, 3-517, 3-5-17-257, 3-5-353-929, 

3-5-17-257-65537, 3-5-17-353-929-83623937. 

If (2) has any further solutions they are products of 7 or more 
prime factors. 

STANFORD UNIVERSITY 

* This solution can be also obtained from the solution n — 3-5-17-353-929 
by using Lemma 1. In the same way if 6992962672132097 is a prime 

n = 3 • 5 • 17 • 353 • 929 • 83623937 • 6992962672132097 
=48901526933832864378258473353215 

is a solution of (2). 


