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DIVISION ALGEBRAS OVER AN ALGEBRAIC FIELD* 

BY A. A. ALBERT 

1. Introduction. H. Hasse has given a rigorous treatment of 
the theory of quadratic null forms over the field R of all rational 
numbers. He used the theory of p-adic numbers and readily ex­
tended his methods to obtain complete results on quadratic 
forms over any algebraic number field f and hence, by a simple-
isomorphism, over any field R(d), where 0 is any quantity satis­
fying an equation with coefficients in R and irreducible in R. 
Hasse has also used the fundamental principle of his quadratic 
form theory to prove several important theorems on cyclic 
(Dickson) algebras. J 

I have recently obtained theorems on rational division alge­
bras by the use of A. Meyer's theorem that every indefinite 
quadratic form, with rational coefficients, in five or more vari­
ables is a null form.§ But now Hasse's theorems make the ex­
tension to algebras over algebraic fields R(9) almost immediate. 
In particular it is shown here that the direct product of any two 
generalized quaternion algebras over R(6) is never a division 
algebra, || and that a sufficient condition that a normal division 
algebra of order sixteen over R(6) be a cyclic algebra is that it 
contain a quantity x not in R(0) such that x2=Af +A2

2 with Ai 
and A2 in R(0). 

* Presented to the Society, September 9, 1931. 
t See his Darstellbarkeit von Zahlen durch quadratische For men in einem 

beliebigen algebraischen Zahlkörper, Journal für Mathematik, vol. 153 (1923), 
pp. 113-130. These theorems seem to be not so well known in America as they 
should be. References on quadratic null forms are always made to the clumsy 
nineteenth century treatment of A. Meyer and the partial reproductions of 
Bachmann instead of to the modern short rigorous p-adic discussion of Hasse. 
Moreover Hasse's extensions to algebraic fields are of extreme importance and 
they should be better known. 

t Theory of cyclic algebras over an algebraic number field, which will appear 
in the January, 1932, issue of the Transactions of this Society. 

§ For references see §3. 
|| This theorem has several applications. I shall use it in a paper to be 

offered for publication to the Transactions of this Society to prove that all 
normal division algebras of order sixteen over a field R(B) are cyclic (Dickson) 
algebras. 



778 A. A. ALBERT [October, 

Hasse's new theorems on cyclic algebras are also used here to 
obtain an alternative proof of the above theorem on generalized 
quaternion algebras. In fact I show here that a necessary and 
sufficient condition that a direct product of any two normal di­
vision algebras over a field R(9) be a division algebra is that 
their orders be relatively prime. 

2. Preliminary Theorems. Let -Fbe any non-modular field. We 
shall assume the following known theorems.* 

THEOREM 1. The order of any normal simple algebra is the 
square of an integer n called the degree of the algebra. (WEDDER-

BURN.) 

THEOREM 2. Let A be a simple algebra over F and let B be a 
normal simple sub-algebra of A. Then A is the direct product BXC 
of B and another simple sub-algebra C of A. (WEDDERBURN.) 

THEOREM 3. Every simple algebra A over Fis expressible in the 
form A =MXD where M is a total matric algebra and D is a di­
vision algebra in one and only one way in the sense of equivalence, 
and conversely. (WEDDERBURN.) 

In the following theorems we take D to be a normal division 
algebra of order m2, degree m, over its centrum F. 

THEOREM 4. The grade s of any quantity y of D is a divisor of 
the degree m of D and there exists a quantity xin D of grade m with 
respect to F such that y is in F(x). (ALBERT.) 

THEOREM 5. Every root in D of the minimum equation of a 
quantity y in D is a transform z~lyz of y by a quantity z in D. 
(ALBERT.) 

THEOREM 6. The only quantities of D commutative with xinD of 
grade m with respect to F are quantities of F(x). (DICKSON.) 

DEFINITION. An algebraic field Z over F is called a splitting 
field (Zerfallungskörper) of D if DXZ is a total matric algebra. 

* For proofs of the very well known Theorems 1, 3, 6, see L. E. Dickson's 
Algebren und ihre Zahlentheorie. For Wedderburn's Theorem 2, see the Pro­
ceedings of the Edinburgh Mathematical Society, vol. 25 (1906), pp. 1-3. For 
Theorem 4, see the author's Theorem 37 of his paper, Annals of Mathematics, 
vol. 30 (1929), pp. 583-590, and for Theorem 5, see the same journal, vol. 30 
(1929), pp. 322-338, Theorem 12. Finally for proofs of Theorems 7, 8, 11,12 
see the author's paper, On direct products, Transactions of this Society, vol. 33 
(1931), pp. 690-711. 
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THEOREM 7. Let Z be a splitting field of order n over F of D of 
degree m over F. Then n = rm, and if M is a total matric algebra of 
degree r the normal simple algebra MXD of degree n over F con­
tains a sub-field F(z) isomorphic to Z. (ALBERT.) 

THEOREM 8. Let Y be an algebraic field of order n over F. Then 
AXY=MXB, where M is a total matric algebra of degree s, and 
B is a normal division algebra of degree t over Y such that m = st, 
n = sr, so that s divides n. (ALBERT.) 

Suppose tha t y in D has grade 5 with respect to the centrum 
F of D. By Theorem 4 we have n =st and there exists a quantity 
x in D of grade m for F such that y is in Fix). The algebraic field 
F(x) is then a relative field of order t over F(y). If £ is a scalar 
root of the minimum equation of x for F then, as is very well 
known, F(£) is a splitting field for D. If the expression for y in 
F(x) is y =f(x), the scalar rj = ƒ(£) has grade s for F and F(£) is 
a relative field K(g) of order t over K = F(rj). Also t\ is a scalar 
root of the minimum equation of y for F. If D' =DXK, then 
D"=D'XK(0=DXF(\) is a total matric algebra. But 
D' = MXB where ikf is a total algebra of degree a and B is a 
normal division algebra of degree /3 over its centrum K, such 
that 

m = a/3, 5 = pa. 

Also B" =D'XK(£) = MXBXK(%) is a total matric algebra so 
that , by Theorem 8 applied to B, the integer /3 divides /. But 
st = m=a/3 and a divides s, j8 divides /. Hence a = s, j8 = /. If 770 
is any other scalar root of the minimum equation of y with re­
spect to Fj then DXF(rjQ) is simply isomorphic with DXF(rj) 
and has exactly the same properties. We have therefore proved 
the following theorem. 

THEOREM 9. Let yin D have grade s f or F so that m=st. Then, 
if rj is any scalar root of the minimum equation of y for F, 

D X F(rj) = MXB, 

where M is a total matric algebra of degree s and B is a normal 
division algebra of degree t over its centrum F(rj). 

Let i ï be a total matric algebra equivalent to M of Theorem 9. 
As the author has shown (On direct products, loc. cit.) there ex-
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ists a quantity rj in H satisfying the condition of Theorem 9 so 
that DXH contains DXF(rj) as a sub-algebra. But DXF(r}) 
= MXB, so that , by Theorem 2, HXD = MXC, where C is ne­
cessarily a normal simple algebra. I t follows from the uniqueness 
in Theorem 3 tha t C is equivalent to D. Algebra C is the 
algebra of all quantities of HXD which are commutative 
with all of the quantities of M, and contains B as a sub-algebra. 
If yi in D corresponds to rj in C under the isomorphism between 
D and C, then y\ is a root of the minimum equation of y with re­
spect to F and, by Theorem 5, is a transform z~~lyz of y by a 
quantity z in Z>. If the correspondence between the quantities 
of D and C is designated by d ^c> then we can obviously set up 
a new simple isomorphism zdz~l ^c in which now y corresponds 
to rj. Hence D contains an algebra B0 which is a normal division 
algebra of degree / over its centrum F(y) equivalent to B as over 
F(rj). The algebra G of all quantities of D commutative with y 
has Bo as a sub-algebra and, by Theorem 2, G = BoXQ, where Q 
is an algebra over F(y). By Theorem 4 algebra B0 contains a 
quantity b of grade / with respect to F(y). The field F(b, y) has 
order st over F and contains a quantity x of grade m with re­
spect to F generating it. But x is in BQ and is commutative with 
all of the quantities of Q. By Theorem 6 the quantities of Q are 
in F(x), and hence in B0, so that B0 is G. 

THEOREM 10. The algebra B of Theorem 9 is simply isomorphic 
with the algebra of all quantities of D commutative with y, under a 
correspondence where y corresponds to rj. Hence this latter algebra 
is a normal division algebra of degree t over its centrum F{y). 

We shall also use the following theorem of Brauer which I 
discovered independently and which I have proved in a short 
new way in my paper On direct products, loc. cit. 

THEOREM 11. Write m = pe
1

1'pe
2

2 • • • p'*, where the pi are dis­
tinct primes. Then D=DiXDiX • • • X A , where Di is a normal 
division algebra of degree pï* over F in one and only one way in 
the sense of equivalence, and conversely. (BRAUER, ALBERT.) 

We require in addition the following theorem of my own. 

THEOREM 12. Let m=pe, p a prime, and let x in D have grade 
m for F. Then there exists an algebraic field Z of order n over F, 
such that n is prime to p, DXZ is a normal division algebra of de-
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grée m over its centrum Z, and Z{x) is a cyclic field of order p over 
a sub-field Z{y) of order pe~l over Z. (ALBERT.) 

The following statement is an immediate consequence of 
Theorem 12, the definition of a cyclic algebra and Theorem 10. 

THEOREM 13. Let D'=DXZ, y and x be as in Theorem 12. 
Then the algebra B of all quantities of Dr commutative with y is a 
cyclic algebra of degree p over its centrum Z(y). 

3. Applications of the Has se Theory of Quadratic Forms. Let R 
be the field of all rational numbers, and let <£(£) = 0 with coeffi­
cients in R and degree m be irreducible in R. Let 

(1) t i , • • • , £r, Vu ' ' * y Vs, rji, ' ' ' , Vs 

be the m = r+2s complex roots of the equation # ( £ ) = 0 , where 
£i, • • • , £r are all real and rji, - • - , rj8 are all imaginary. Suppose 
that 0 is any quantity such that <j£>(0) = 0 so that we can define 
an algebraic field R(0) of order m over R} which is evidently sim­
ply isomorphic with each of the algebraic number fields gener­
ated by each of (1). An n-ary quadratic form 

(2) Q{6) = Q(d; xi, • • • , xn) = X) Oij(P)%iXj 

with coefficients in 2?(0) is called a null form if there exist 
xi, • • • , xn not all zero in 2?(0) such that Q = 0. Hasse has 
proved that an n-ary quadratic form (2), n^5, is a null form if 
and only if the corresponding real forms 

Qk = Q(£k) = X) <*ifâh)Xixi9 (k =* 1,- • • ,r)f 
i,i 

are all indefinite. 
We apply Hasse's theorem first to the form 

(3) Q = ax? + fix? — afix£ — (pxi + <7X5
2 — crpx£). 

For a fixed k, if we use the notation X(£&) = XA>, then in Qk the num­
bers oik, j3&, —oik&k all have the same sign only when all are nega­
tive. The numbers — p&, — o**., &kPk are never all negative, so 
that the forms Qk are all indefinite. Hence the form (3) is always 
a null form. I have proved* that if B and C are any two general­
ized quaternion algebras 

* This Bulletin, vol. 37 (1931), pp. 301-312, in particular, p. 311. 
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B = (1, i,j, ij), i2 = a, f = 0, ji = - ij, 

C = (1, / , / , / / ) , P = p, J* = <x, JI = - IJ} 

then the direct product B X C is a division algebra if and only 
if the form (3) is not a null form. But when B and C are algebras 
over R(6) we have shown that (3) is always a null form. Hence 
we have proved the following result. 

THEOREM 14. Let B and C be generalized quaternion algebras 
over a field R(d). Then BXC is not a division algebra. 

In a recent paper* I proved that a sufficient condition that a 
normal division algebra D of order sixteen over R be a cyclic 
(Dickson) algebra, is that D contain a quantity x not in R but 
such that #2=Ai2+A22 with Ai and A2 in R. The proof was ra­
tional throughout except for the use of the analog to Theorem 
14 on page 184, which could have been avoided, and the essen­
tial proof that the form numbered (53) was a null form. The 
proof was exactly of the same nature as our proof that (3) is a 
null form, depending only on intrinsic signs of coefficients, and is 
valid for any field JR(fl). We may state then the validity of the 
following theorem without further proof. 

THEOREM IS. A sufficient condition that a normal division alge­
bra D of order sixteen over R(6) be a cyclic (Dickson) algebra is 
that D contain a quantity x not in R(6) such that #2=Ai2+A2

2 , 
where Ai and A2 are in R(d). 

I have recently published two papers,f of which the results 
and the proofs given are again valid f or any field R(d), except 
that Theorem 4 of the latter paper, where the Meyer theorem 
on quaternary quadratic null forms is applied, should be re­
placed by the Hasse criteria for quaternary quadratic forms 
over an algebraic number field isomorphic with R(6). 

We shall now pass to a generalization and alternative proof of 
Theorem 14. 

4. The Direct Product DXB. Let A be any normal simple al­
gebra over an algebraic field F = R(d). ByTheorem3,^4 =MXD, 

* Transactions of this Society, vol. 32 (1930), pp. 171-195. 
t A necessary and sufficient condition for the non-equivalence of any two ra­

tional generalized quaternion division algebras; this Bulletin, vol. 36 (1930), pp. 
535-540, and A construction of all non-commutative rational division algebras 
of order eight Annals of Mathematics, vol. 31 (1930), pp. 567-576» 
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where M is a total matric algebra and D is a normal division 
algebra, the division algebra component of A. Hasse in his paper 
on cyclic algebras (loc. cit.) has called two normal simple alge­
bras similar if they have the same division algebra components. 
Hasse has called a normal simple algebra cyclically represent-
able if it is similar to a cyclic algebra and has proved the follow­
ing theorems. 

THEOREM 16. Every cyclically representable algebra D over R(9) 
is a cyclic algebra. (HASSE.) 

THEOREM 17. The direct product of two cyclically representable 
algebras is cyclically representable. (HASSE.) 

We also use the following known theorem {On direct products, 
loc. cit.). 

THEOREM 18. Let D be any normal division algebra over a non-
modular field. Then there exists an integer p which divides the de­
gree m of D, such that p is the least integer a for which the direct 
product Da is a total matric algebra. In particular Dm is a total 
matric algebra. (BRAUER, ALBERT.) 

The integer p is called the exponent of D. Hasse has also 
proved the following theorem. 

THEOREM 19. The exponent of any cyclic normal division alge­
bra D of degree m over F = R(0) is m. (HASSE.) 

Let D and B be any two cyclic normal division algebras of the 
same degree p, a prime, over their common centrum F = R(d), 
an algebraic field. Then D XB is a normal simple algebra so that 
DXB = MXCy where M is a total matric algebra and C is a 
normal division algebra over F. Now {DXB)V = DVXBV is a 
total matric algebra by Theorem 18. Hence {MXC)V is a total 
matric algebra so that Cp is a total matric algebra and the ex­
ponent of Cis at most p. By Theorem 17 the algebra MXC and 
hence C is a cyclically representable algebra. By Theorem 16 
algebra C is a cyclic algebra. By Theorem 19 the degree of C is 
its exponent so that the degree of C is at most p. But the degree 
oi MXC is p2 so that the degree of M is at least p and DXB is 
not a division algebra. 

LEMMA. The direct product of any two cyclic normal division al­
gebras of the same degree p, a prime, is not a division algebra. 
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Let next D and B be any normal division algebras of degrees 
p6 and pf respectively, p a prime and both e and ƒ not zero, over 
a common centrum F = R(d). We may extend the centrum F of 
D and B to be Z, by Theorem 12, such that D' over Z has the 
property of Theorem 13, and this extension may be obviously 
made so that simultaneously B' has the property of Theorem 13. 
If DXB is a normal division algebra, then, since the order of Z 
with respect to F is prime to p, by Theorem 8, algebra D'XB' 
over Z is a normal division algebra. Let y in D and rj in B be the 
quantities of Theorem 13. Then the algebra C of all quantities 
of D' commutative with y is a cyclic normal division algebra of 
degree p over its centrum Z(y). The algebra E of all quantities 
of B commutative with rj is a cyclic normal division algebra of 
degree p over its centrum Z(rj). The quantity ;y is in the normal 
division algebra D'XB' and the algebra of all quantities of 
D'XB' commutative with y is evidently CXB over its centrum 
K = Z(y). In CXB over K the algebra of all quantities of this 
algebra commutative with rj is evidently CXE over its centrum 
K(r]). But C and E are cyclic algebras of degree p over K(rj), an 
algebraic field over R and by our Lemma not a division alge­
bra. This is a contradiction of the fact that every sub-algebra of 
a division algebra is a division algebra. Hence DXB is not a di­
vision algebra. 

Now let D and -B be any normal division algebras of degrees 
m and r respectively over F — R(0). Urn and r have a prime fac­
tor p in common, then D = J9i X -D2, B = Bi X B2, where D\ is a nor­
mal division algebra of degree pe, the highest power of p dividing 
w, i?i is a normal division algebra of degree ^ , the highest power 
of p dividing r. But DXB = (DxXBi)X(D2XJBa), while P1X.B1 
is not a division algebra as we have proved. Hence DXB is not 
a division algebra. Conversely let the orders of D and B be rela­
tively prime. By Theorem 11, algebra DXB is a normal division 
algebra. Passing from degrees to orders, we have the following 
result. 

THEOREM 20. A direct product of two normal division algebras 
over the same centrum R(0) is a division algebra if and only if the 
orders of the two algebras are relatively prime. 

THE UNIVERSITY OF CHICAGO 


