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C R I T E R I A FOR T H E SOLUTION OF A CERTAIN 
QUADRATIC D I O P H A N T I N E EQUATION 

BY R. G. ARCHIBALD 

1. Introduction. The interesting diophantine equation, 

(1) ax2 + by2 + cz2 + du2 = 0, 

in which a, b, c, d are integers, all different from zero, and 
x, y1 z> u are the unknowns, has already been treated in the 
literature. I t is, however, desirable to have a complete treat
ment and definite statement of criteria for solvability directly 
applicable to a given equation. 

In 1884 A. Meyer* stated, though somewhat obscurely, neces
sary and sufficient conditions for the solvability of equation (1), 
but his proof, as well as P. Bachmann'sf treatment, is restricted 
to the case in which a, &, c, d are all odd integers. In 1930 an 
account of this equation was given by L. E. Dickson; J but, as he 
points out himself, his work is incomplete in the case in which 
exactly two of the coefficients are even integers and abcd/4: = 5 
(mod 8). Recently a paper § by L. J. Mordell has appeared in 
which a complete and independent derivation of conditions for 
solvability is given. His conditions, however, are not always 
directly applicable to a given equation: more explicitly, his con
dition II may not be satisfied by a given equation and yet the 
equation may possess a solution. According to the scheme there 
presented, restrictions are placed on the values of the unknowns, 
and it may happen that a set of diophantine equations have to 
be tested to determine whether the given one is solvable or not. 
This is best illustrated by an example. 

His method is not directly applicable to the equation 
ll0x2 + 770y2-z2-u2 = 0, 

which is solvable for # = 2, 3> = 1, 2 = 11, u = 33). We enquire, 

* Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, vol. 29 
(1884), pp. 209-222. 

f Zahlentheorie, Part IV, Die Arithmetik der Quadratischen Fortnen, I , pp. 
259-266. 

t Studies in the Theory of Numbers, pp. 70-76. 
§ Journal für Mathematik, vol. 164 (1931), pp. 40-49. 
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without loss of generality, whether this equation has a solution 
such that #, y, z, u have no common factor. 

Since Mordell's condition II is not satisfied, we may gather 
that either the equation has no (non-trivial) solution or both 
z and u have either the factor 5 or the factor 11, or both. If 
z and u both have the factor 5, we are led to the equation 
22#2 + 154;y2 — Sz£ — Su? = 0 , for which again condition II is not 
satisfied. (By our assumption that x, y, z, u have no common 
factor we know that x and y are not divisible by 5.) 

If the equation just mentioned has a solution, both Z\ and u\ 
must have the factor 11 ; consequently we are led to the equa
tion 2x2 + 143/2 — 55^2

2 — 55w2
2 = 0 . Here, again, condition II is 

not satisfied. Thus, the original equation either possesses no solu
tion, or z and u do not have the factor S. 

Next, we may suppose that both z and u have the factor 11 and 
obtain the equation 10x2 + 70;y2 — 110O

2 — ll^o2 = 0 , for which 
the condition II is satisfied. Hence the original equation, as 
tested by Mordell's criterion, has a solution. 

I t is our object here to obtain, as a special case and applica
tion of important considerations* of H. Hasse, necessary and 
sufficient conditions, which can be directly applied to a given 
equation, for the solvability in integers, not all zero, of equa
tion (1) with integral (rational) coefficients a, b, c, d, all different 
from zero. 

2. Necessary and Sufficient Conditions for Solvability. Prelimi
nary Conditions. Without loss of generality we may assume 
thatf 

(i) Each of a, b, c, d is without a squared factor > 1 . 

(ii) No three of a, b, c, d have a common factor > 1 . 

Necessary and sufficient conditions t for the solvability of equa-

* Über die Darstellbarkeit von Zahlen durch quadratische Formen im K'ôrper 
der rationalen Zahlen, Journal für Mathematik, vol. 152 (1923), pp. 129-148. 
This paper was brought to the writer's at tention by Hasse. 

f See, for example, Meyer, loc. cit., pp. 209-210, or Dickson, loc. cit., pp. 
68-71. 

% We employ the notation used by Meyer; namely, 

a = {a, ft)(a, c)(a, d)a, b = {a, b){b, c)(b, d)p, 
c = (a, c)(b, c)(c, d)y, d = (a, d)(b, d)(c, d)5, 

where (ƒ, g) denotes the greatest common divisor of ƒ and g. 
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tion (1), with a, &, c, d non-zero integers, satisfying the above 
preliminary conditions are the following : 

I a, &, c, d are not all of the same sign. 

II (i) —-(a, c)(a, d)(b, c)(b, d)yh is a quadratic residue of 
every odd prime p dividing either (a, b) or (c, d) such that 
a t the same time Legendre's symbol (a^yô/p) = + 1 ; 

(ii) —(a, b)(a, d)(b, c)(c} d)/3S is a quadratic residue of 
every odd prime p dividing either (a, c) or (&, d) for which 
(apyS/p) = +l; 

(iii) —(a, b)(a, c)(b, d)(c, d)fiy is a quadratic residue of 
every odd prime p dividing either (a, d) or (b, c) for which 
(aPyd/p) = +l. 

I l l Either 
(i) abcd = 2, 3, 5, 6, 7 (mod 8); 

or 
(ii) abcd^l and a + &+£+d = 0 (mod 8); 

or 
(iii) abed = 4 (mod 8), and, if a and b are even and c and rf 

odd, either abed/4: = 3, 5, 7 (mod 8), or abed/4: = I (mod 8) and 
a b {cdY - 1 

— + — + c + d s ^— (mod 8). 
2 2 2 

3. Application of Hasse's Work. By the discriminant of a 
quadratic form we mean the determinant D = |a»/1 of its set of 
coefficients. We shall consider only forms which have non-zero 
discriminant. By the rational kernel of a number m, different 
from zero, in the field K(\) of all rational numbers, we mean the 
uniquely determined reduced number obtained by removing all 
rational squared factors from m. Similarly, the p-adic kernel of a 
number m ( ^ 0 ) in the field* K(p) of £-adic numbers is the re
duced number obtained by removing from m all squared factors 
occurring in the field K(p). The rational kernels are integral 
positive or negative numbers without squared factors. Ra
tionally equivalent forms have the same rational kernel for their 
discriminants, and ^-adically equivalent forms have the same 
£-adic kernel for their discriminants. The £-adic kernels, say 
dp, of the discriminant of one and the same form in the field 

* See K. Hensel, Zahlentheorie, 1913, Chapter 6. 
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K(l) are a t the same time the £-adic kernels of the rational 
kernel, d, of the discriminant. We speak of the invariants d 
and dp* 

Consider a ternary quadratic form ƒ. We define for a form 
equivalent, in the algebraic sense, to ƒ and without cross-product 
terms (which always exists), let us say fo = by2 + cz2+du2, the 
quantity lv as the generalized Hubert* norm residue symbol 

/-be,- bd\ 
£p== £*(ƒ<>) = I J • 

This quantity cp(fo) is an invariant with respect to p-adic trans
formations and can be denoted by ZP(J). We consider now Hasse's 
theoremf that a quaternary quadratic form (with rational coef
ficients) of invariant d represents zero rationally if and only if 
in any form whatever of the special type ax2-\-<l>(y, z, u) ra
tionally equivalent to it, &p(<£) = + l whenever the generalized 
symbol J of Legendre (d/p) has the value + 1 , this holding true 
for every finite prime p and also§ for p — p^ For our purpose let 
f = ax2 + by2+cz2+du2 and <p = by2 + cz2+du2, whence 

(-be,- bd\ 

In the form ax2 + by2-{-cz2+du2, with integral rational coef
ficients, let us assume abed T^O and the preliminary conditions 
(i) and (ii) to hold. Hence, the invariant d is afiyö. 

Our equation (1), then, with abed^0 and with the preliminary 
conditions (i) and (ii) satisfied, is solvable in rational numbers (or, 
what is equivalent, in integers) if, and only if, for every finite prime 
p and for p=pO0l the Hilbert symbol 

(-be,- bd\ 
(2, ( — — ) - + . 

when the generalized Legendre symbol ((a(3yô)/p) = + 1 . 
Now we have 

-bc= - (J, c)2(a, b)(b, d)(a, c)(c, d)(3y} 

_ u = - (b, d)2{a, b)(b, c)(a, d)(cy d)$b. 

* Hensel, loc. cit., Chapter 12, §§4-6. 
t Hasse, loc. cit., p. 143. 
i Hasse, loc. cit., p . 134. 
§ See Hensel, loc. cit., Chapter 12, §1. 
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In the first place, consider the field K{p^), that is, the case 
p — p^ Now (afiyô/pn) = + 1 when and only whenaj3Y5>0. But 
when p = p00, (( — be, —bd)/p00) = +l if at least one of — be, —bd 
is positive. Hence, whenever afiyô > 0 , either j8 and y must be of 
opposite sign or j8 and 5 are of opposite sign; and whenever 
afiyb< 0, the condition (2) is obviously satisfied. Hence, in this 
case the condition (2) is equivalent to saying that not all of 
a, b, c, d are of the same sign (our condition I) . 

Secondly, let p be an odd prime. Now, since a squared factor 
cannot occur in afiyd, and since, if p itself divided afiyô, then 
(al3y8/p)9^ + l) we need only consider primes not dividing 
aftyô; that is, only odd primes not dividing abed, and those odd 
primes dividing exactly two of a, b, e, d. 

(i) Let p be an odd prime dividing either (a, b) or (c, d). 
Then* 

/-be,- bd\ _ / - (b,d)(a,e)(b,e)(a,d)yô\ 

It follows, therefore, that in this case our condition states that 
— (b, d)(a, e)(b, c)(a, d)yh is a quadratic residue of every odd 
prime factor p of either {a, b) or (e, d) such that the relation 
(a(3yô/p) = + 1 holds (our condition II (i)). 

(ii) Let p be an odd prime dividing either (a, e) or (b, d). 
Then 

/ - be, - bd\ / - (a, b) (b, e) (a, d) (c, d)pô\ 

It follows, therefore, that in this case, our condition states that 
— (a, b)(b, e)(a, d)(e, d)(3ô is a quadratic residue of every odd 
prime factor p of either (a, e) or (&, d) such that the relation 
(afiyô/p) = + 1 holds (our condition II (ii)). 

(iii) Let p be an odd prime dividing either (a, d) or (ô, e). 
Then 

/-be,- bd\ = / - (a,b)(b,d)(a,e)(e,d)py\ 

Hence our condition states that — (a, b)(b, d)(a, c)(c, d)$y is a 
quadratic residue of every odd prime factor p of either (a, d) or 
(b, c) such that (<x(3y8/p) = + 1 (our condition II (iii)). 

* Hensel, loc. cit., p. 317. 
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Thirdly, let p be an odd prime dividing none of a, ft, c, d. Then 
(( — be, —bd)/p) is automatically equal to + 1 . 

Fourthly, let p be the prime p = 2. 
(i) Let 2 be a factor of one only of a, &, c, d. The condition is 

vacuously satisfied since (apyô/2)^+l. Hence, if abed = 2 or 
6 (mod 8), no further condition is required (part of condition 

ma)). 
(ii) Let 2 be a factor of precisely two of a, b, c, d. Without loss 

of generality, let us suppose that a and b are even and that 
c and d are odd (that is, (a/2)(b/2)cd=l, 3, 5, 7 (mod 8)). We 
desire to have (( — be, —bd)/2) = + 1 whenever (a/3y5/2) = + 1 . 
But (a/3yô/2) = +l if and only if «1878=1 (mod 8); that is, if 
and only if (a/2)(b/2)cd=l (mod 8). Hence, employing the 
usual methods of evaluating the symbol ((ƒ, g)/2), we desire 

( (a, b) ) 2 

J - (6, cY ̂ ~ & *> (*> *> ̂  ^ ƒ " * 
8 

( (a, b) ) 2 

{ - ( f t , * 2 - ^ (*, ')(*, <*)(*, ^ 5 J - 1 
+ 

(a,b) 

+ 
J - (ft, <02 - ^ (ft, d) (a, s) (*, d)0y - 1 J 

f (a, 6) ) 
J - (ft, dY - ~ - (6, c) (a, J) (c, d)/38 - 1J 

to be e^n when «1875 = 1 (mod 8). Now, since for two odd in
tegers A and J3, 

.42 - 1 £ 2 - 1 (AB)* - 1 
H == : -' (mod 32), 

we have finally, remembering that the square of an odd number 
is of the form 8 M + 1 and that (a/2)(b/2)cd = l (mod 8) 
(whence (b/2)c + l = (a/2)d+d2 (mod 8)), 
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(cd)* - 1 ft a 
d2 + c j + _ j + _ r f + j « s s o (mod 8) 

2 2 2 
when a(ïyô = l (mod 8), that is, when (a/2)(ft/2)cd = l (mod 8), 
We note that 

{cdy - l {cdy - l 
— d == (mod 8), 

2 2 
and obtain on simplification the condition that 

a b {cdY - 1 
— H h c + d = (mod 8) 
2 2 2 

when (a/2)(b/2)cd = l (mod 8). If (a/2)(b/2)cd = 3, 5, 7 
(mod 8), that is, a(3yö = 3, 5, 7 (mod 8), we saw that 
(a^yd/2) 5̂  + 1. Hence we have our condition III (iii). 

(iii) Finally, let each of a, b} c, d be odd. Then 

/-be,- bd\ 

where 
- (b,c)*(o,b)(b,d)(a,c)(c,d)Py- 1 

5 = 
2 

- (ft, d)2(a, ft)(ft, c)(a, d)(c, d)$b - 1 

2 

Hence we desire 5 to be even whenever (a(3yô/2) = +1. But 
(<x(3yô/2) = +1 when and only when abed = 1 (mod 8). The condi
tion is therefore vacuously satisfied when abed^=3, 5, 7 (mod 8) 
(part of condition III (i)). Thus, when abcd^l (mod 8), we de
sire 

{{b,cna,b)(b,d)(a,c)(c,d)Py+l} 

• {(ft, d)\a} ft)(ft, c)(a9 d)(c, d) 08 + l} = 0 (mod 8). 

Tha t is, cd+bc+bd+abcd = 0 (mod 8); or, in other words, since 
abed = 1 (mod 8), a + ft+£+d = 0 (mod 8). This is our condition 

m (n). 
All possible values of p have been considered. The set of con

ditions I, II , and III is therefore necessary and sufficient for 
the solvability of equation (1) in integers. 
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