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ON COMPLETE SYSTEMS UNDER CERTAIN 
FINITE GROUPS 

BY C. W. STROM 

1. Introduction, The theory of complete systems of invariants 
for rational functions that are unaltered under the substitutions 
of a finite group finds a close parallel in the theory of the binary 
n-\c. 

I t is well known that all the invariants and covariants of a 
binary n-ic can be expressed as rational functions of just n 
explicitly known forms such that the denominators are powers 
of the n-ic itself. In the parallel case Lagrange's theorem states 
that every rational function F(xi, • • • , xn) that is unaltered 
under the substitutions of a finite group G onxi, • • • -, xn can be 
expressed as a rational function of the elementary symmetric 
polynomials £<,(i = l, • • • , n), and any particular F that be­
longs to G. In these representations the denominator is a par­
ticular symmetric polynomial depending only on F. 

If complete integrality is insisted upon, it is well known that 
the number of members in the complete system of the binary 
w-ic is finite although the exact number and the explicit forms 
cannot in general be determined by known means. In this paper 
we study the problem of obtaining irreducible sets of poly­
nomials such that all polynomials that are invariant under the 
substitutions of a certain finite group can be expressed as 
rational, integral functions of the members of the irreducible 
set. In the case of the symmetric group Gn

n\ the answer is given 
by the fundamental theorem of symmetric functions. The re­
sults for the alternating group GJJi/2 and the identity group G\ 
are also well known. We present solutions for the cyclic groups, 
the solvable groups, and the simple group Gj[68. In the cases of 
the cyclic groups and the solvable groups, the number of mem­
bers in the irreducible sets is shown to be finite but the de­
termination of the exact number is resolved essentially into a 
problem of partitions and can therefore not be expressed in 
general by known means. 

If we regard coordinates in Sw-i, we may regard 
the group G as a collineation group and the results may be in-
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terpre ted as giving complete systems of invariants for certain 
collineation groups. 

2. The Cyclic Groups. We consider a cyclic substitution of 
order n : 

s = (#offi * * * * n - i ) . 
If 

Vi = oco + éxi + • • • + e^-1^^»-!, e = e2Tiln, 

(i = 0, 1, • • • , (n - 1)), 
then 

nxi = y0 + € ( n-°yi + • • • + e ^ 1 ^ » - ' ) ^ ! , 

Hence, if P(x) is any polynomial in x0l Xi, • • • , #n-i, we have 

P(a) = n(y) = X) ^ao,---.«„-i3;o0 • • • y°t£i . 

Since 5(3/») = e*3>;, we have the following theorem. 

THEOREM 1. A necessary and sufficient condition that P(x) be 
invariant under the substitutions of the cyclic group Gn

n is that it be 
expressible as the sum of products of arbitrary powers of yo and 
products like y f • • • 3fcS where ai, • • • , cen_i form a positive 
integral solution of the diophantine equation 

ai + 2a2 + - • • + in — l)a«_i = rn, (r = 1, 2, 3, • • • ) . 

The solution of this equation is easy in particular cases and is 
dependent in general on partitions. Any solution of this equa­
tion yields a polynomial that is invariant under the given substi­
tution. A finite set of polynomials to form a complete system 
is obtained from the aggregate of solutions by elementary con­
siderations. 

The determination of a complete system for the polynomials 
that belong to the cyclic group G%* requires q sets of cogredient 
3'i's like those above and the solution of the diophantine equa­
tion 

X)[W + 2a2
3 + • • • + ( » - l)aw-i] = m, (r = 1, 2, 3, • • •)• 
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3. The Solvable Groups. If a polynomial P belongs to a sub­
group H of index n under a finite group G, then P is ^-valued 
under G. If H is self-con jugate under G, then the conjugates of 
P are permuted under G according to the factor group G/H. If 
the complete system of H is known consisting of q polynomials, 
and if the factor group G/H is cyclic, we have q sets of n quan­
tities each permuted according to the cyclic group G^- A com­
plete system for G can then be found by the methods outlined 
above. A repetition of this process enables us to obtain a com­
plete system of invariants for the polynomials that belong to 
any composite group G whose series of composition G, Gi, • • • , 
GM, 1 is such that the factor groups GM, GM_i/GM, • • • , G/Gi are 
all cyclic. If we assume, as we may without loss of generality, 
that each of the subgroups in the series of composition of G is a 
maximal self-conjugate subgroup, then the groups defined are 
just the solvable groups. For if the self-conjugate subgroups are 
all maximal, the factor groups are all simple. If the factor 
groups are also cyclic they must be of prime order and G is a 
solvable group. 

4. The Simple Group Gj68. The elementary symmetric poly­
nomials on seven letters, E{, (i = l, • • • , 7), are clearly invari­
ant under this group. However, £ 3 and £ 4 break up into parts 
tha t are themselves invariant under the group. We shall call 
these parts S-polynomials. They play a role in this theorem 
analogous to that of the Ei in the fundamental theorem of sym­
metric functions. For the sake of uniformity we adopt the 
following notation :* 

Ei = Si9 E2 = 6*2, Ez = Snz + 5*234, E± = 6*1237 + S\ .234? 

£ 5 = 5*1-26-35, EQ = 5 l4 -35 -36 , E7 = 6*1234567. 

The group G}68 is the group of the finite geometry of seven 
points in a plane, transforming three points of this geometry 
that are on a line into three points on a line, and three points 
that are not on a line into three points not on a line. Hence, in 
5*234 the subscripts run over the triads that are on the seven lines 
of this geometry and in Sm they run over the triads that form 

* In these and following identities connecting 5- and S-polynomials the sub­
scripts themselves are written in place of the letters to which they are attached. 
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the twenty-one triangles. Thus 5234=^2^3^4+^i^2^c+^i^3^5 + 
x1X4X7+x2xèX7+X3XzX7+X4Xbx<i is the invariant that defines the 
subgroup G7

16$ of G]u as well as the finite geometry. Similarly, 
in 5i237 the subscripts run over the sets of four points each that 
form the seven quadrangles of the geometry, etc. 

When the letters are affected with exponents, the sym­
metric polynomials break up still farther into parts that are 
separately invariant under this group, as follows: 

Si', S i V ^ S i V , 2lV3*=SlY3*+S2V4*, 

SiWaV+Si ' . ïV^ + S ^ s V 
H - S I ' . J V ^ + SIVSV, 

i>(SlV.2V.8W6W). 

In the identity of extent five the operator P indicates the sum 
of all the distinct S-polynomials of extent five obtained by 
taking the exponents i, j , k, /, and m in groups of two, two, and 
one, and similarly in the identity of extent six. 

Since 2iV3V5w6w72? has 5040 terms if all the exponents are 
different, while any single term has only 168 values under the 
group, we have 

2 lY 3 V5 W 6V - P(SiV3V5W6n7P). 

I t is clear from their definitions that all the 5-polynomials are 
unaltered by the substitutions of the group G7

l6S and that every 
polynomial that is unaltered by these substitutions is a poly­
nomial in the S-polynomials. We have to determine an irre­
ducible set of ^-polynomials in terms of which all ^-polynomials 
can be expressed as polynomial functions. 

We may take xi, • • • , x? as the roots of the equation 

(x — xi) • • - (x — X7) = 0 . 

By means of this equation we may express powers of Xi ̂  7 in 
terms of the Ei and powers of x ^ l . In the solution of our 
problem we need therefore consider only those 5-polynomials 
for which l ^ i , 7, ky I, m, n, p^7. 

Our method of procedure is to investigate the ^-polynomials 
in order beginning with these of extents 1 and 2. In the case of 
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5-polynomials of extent i, (i = l, • • • , 7), we determine a 
limited number such that all can be expressed as polynomial 
functions of this limited number and S-polynomials of extent 
>i. This process terminates when i = 7, leaving us a limited 
number of 5-polynomials of each extent from which an ir­
reducible set may be selected to form a complete system. The 
actual work of reduction is very similar to that used in reducing 
symmetric polynomials. The procedure is illustrated in the 
following : 

O l 2 3 7 — O i 2 3 7 Oi237 

minus ^-polynomials of extent>4. 

By means of this identity we make the reduction of SiVsV de­
pend on the reduction of SiV'zki. 

O l 2 3 7 — O i 2J 3 7 0123 ^ 1 2 3 7 O l 2 3 7 

— Si*"~V'3*72 minus S-polynomials of extent > 4 

+ 5i*~22;'~13fc_17)-5i237 minus S-poly normals of extent > 4; 

S1V37 — ^1237• Si*~12/~1 minus 5-polynomials of extent > 4. 

The identities exhibited above show that all ^-polynomials 
of the type S1V3V can be expressed as polynomials in 5m, 
S1237, and Ei, (i = l, • • • , 7), together with 5-polynomials of 
extent > 4 . An exactly similar procedure is used for the re­
duction of all the types of 5-polynomials listed above. From the 
polynomials that are isolated, the following 19, forming an 
irreducible set, may be conveniently chosen as a complete sys­
tem for the polynomials that are invariant under the group 
G168 ' 

Ei, (i — 1, • • • , 7), 5i23, 

S i ' . m , (j = 1, ' ' ' , 6) , 5^.26.35, (ft = 2, • • • , 6 ) . 
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