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ON A DECOMPOSITION OF A QUATERNARY 
QUADRATIC FORM* 

BY G. Y. RAINICH 

For a binary quadratic form it is very easy to prove that it 
can be decomposed in a unique way into a sum of a form of the 
type e(x2+y2) and another which by an orthogonal transforma­
tion can be reduced to q(x2 — 3>2).f It is the purpose of this note 
to prove an analogous theorem for quadratic quaternary forms, 
namely, that such a form can be presented as the sum of three 
forms ; 

(a) a form of the type e(x2+y2+z2+t2), 
(b) a form which by an orthogonal transformation can be re­

duced to q(x2+y2 — z2 — t2), and 
(c) a square o f a linear form (ax+by+cz+dt)2. 

The decomposition in general is unique ; an exceptional case is 
indicated below. 

It seems that the decomposition is interesting in itself but 
it gains in interest because of possible application in physics. 
Translated into tensor language the theorem may be stated as 
follows: a symmetric tensor of rank two in four-dimensional 
space may be presented, in general in a unique way, as the sum 
of a tensor of the type of a hydrodynamical tensor dga+pUiUj, 
where 5 corresponds to pressure, p to density and Ui is a unit 
vector, the four-dimensional velocity; and an electromagnetic 
stress-energy tensor.J If the theorem were true in pseudo-
euclidean space, it would mean that the contracted Riemann 
tensor, set equal to the sum of the two above tensors, determines 
(in general, uniquely) the field of matter and the electromagnetic 
field. However, the situation in pseudo-euclidean space is more 
complicated and the theorem there is not true without modifica-

* Presented to the Society, August 27, 1929. 
f These two types correspond, if the forms are interpreted as second 

differential forms of surfaces, to a sphere and to a minimal surface respectively. 
% For a proof that this tensor is of the type (b), see Proceedings of the 

National Academy of Science, vol. 10 (1924), p. 126; or Transactions of this 
Society, vol. 27 (1925), p. 117. 
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tion and additional restrictions which lie in the nature of things; 
we limit ourselves here to the euclidean case and leave the 
applications aside, reserving the treatment of the pseudo-
euclidean case for another publication.* 

By an orthogonal transformation every given form can be 
reduced to one of the type 

(1) fx2 + gy2 + hz2 + kt2. 

The problem can be stated then in the following way: is it 
possible to subtract from (1) an expression of the type (a) and 
an expression of the type (c) so that the remainder should be 
reducible by an orthogonal transformation to the type (b)? I t 
is convenient, instead of quadratic forms to consider corre­
sponding matrices. Without writing out separately the matrices 
corresponding to (1), (a), and (c), we write at once the matrix 
corresponding to the first minus the other two ; it is : 

II ƒ — a2 — e — ab — ac — ad II 

— ba g — b2 — e —bc — bd 
(2) 

— ca —cb h — c2 — e —cd 

Il — da — db —de k — d2 — e\\ 

This matrix must be transformable by an orthogonal trans­
formation into one of the type 

0 0 0 II 

q 0 0 

0 -q 0 * 

0 0 - q II 

The square of this matrix is q2 times the unit matrix. But an 
orthogonal transformation brings a unit matrix into a unit 
matrix; therefore the square of the matrix (2) must be a unit 
matrix multiplied by a number, and the elements outside of the 
main diagonal of this matrix (the square of (2)) must neces­
sarily be zero; we obtain thus six equations: 

* Compare L. Hanni, Verwendung des Energie-Impulstensors, etc., 
Tôhoku Mathematical Journal, vol. 27 (1926), pp. 277-292. 

(3) 
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(4) 

ab(a2 + b2 + c2 + d2 + 2e - ƒ - g) = 0, 

ac(a2 + b2 + c2 + d2 + 2e - ƒ - h) = 0, 

ad(a2 + b2 + c2 + d2 + 2e - f - k) = 0, 

bc(a2 + b2 + c2 + d2 + 2e - g - h) = 0, 

bd(a2 + b2 + c2 + d2 + 2e - g - k) = 0, 

cd(a2 + b2 + c2 + d2 + 2e - h - k) = 0. 

We could satisfy these equations by making three of the four 
numbers a, b, c, d zero, for example, a = b — c = 0 ; then the matrix 
(2) becomes a diagonal matrix without any transformation, but 
in order that it should be possible to make it assume the 
form (3) by the choice of the two numbers e and d still at our 
disposal, two of the given numbers f,g,h must be equal. Unless 
two of the numbers f,gyh}k are equal we will not achieve our 
purpose by making three of the numbers a,b,c,d vanish. We 
may try to make two of these numbers zero, for example, 

(5) a = b = 0. 

This satisfies the first five of the equations (4) and to satisfy 
the last one we have to make 

(6) c2 + d2 + 2e -

The matrix (6) becomes now 

f-e 0 0 

h+ k. 

(7) 
0 

0 

0 

g -
0 

0 

0 

h 

de 

0 

0 

— cd 

k - d2 -

An orthogonal transformation of the variables z and t only is 
required to transform this into a diagonal matrix, and any 
additional orthogonal transformations that would not destroy 
diagonality would not affect the elements ƒ—e and g — e. The 
other two elements of the resulting diagonal matrix are the 
roots of the quadratic equation 

(* e + k — d2 — e)x -\-
h CÏ — — cd 

— dc k — d2 — e 
= 0; 
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the coefficient of x in this equation is zero in view of (6) so 
that these two elements must be identified with q and — q of 
the matrix (3), and therefore the elements ƒ—e and g — e also 
must be two numbers whose sum is zero; we obtain in this way 
f-e+g-e = 0, or 

(8) e = i(f+g). 
It only remains for us to arrange it so that the two opposite 

numbers f— e and g — e be of the same absolute value as the roots 
of the quadratic equation above, that is, that the products of 
these two pairs be the same, if we want to have a matrix of the 
form (3). We have thus the equation 

(A - c2 - e)(k - d2 - e) - c2d2 = (ƒ - e)(g - e) 

which in view of (6) and (8) becomes 

(9) kc2+ hd2 = hk - fg. 

Eliminating e from (6) and (8) we obtain also 

(10) c2 + d2 = h+ k- (f+g). 

The last two equations can be easily solved for c2 and d2, if we 
assume that h^k} and give 

h — k k — h 

This furnishes real values for c and d only if the fractions in 
the right hand sides of (11) are both positive; but then we have 
a choice of six possibilities as to which two of the four numbers 
ayb,c,d we set equal to zero and among these six possibilities 
there is always one and only one which gives real values for the 
remaining two. To see this it is enough to notice that for 
d, for example, to be real it is necessary and sufficient that the 
corresponding number h be such that 

( * - ƒ ) ( * - * ) ( * - k) 

be positive; this means that h must be either the greatest or 
the second smallest among the numbers f,g>h,k. We must there­
fore arrange our notations in such a way that h and k be the 
greatest and second smallest among the numbers e,f,g,h) then 
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the formulas (11), (8), and (5) furnish us a solution of the 
problem. 

We still have to consider the possibility of satisfying the 
equations (4) by making vanish more than one of the expres­
sions in brackets in the left hand sides of these equations 
and less than two of the numbers a,&,c,d; but it is easy to see 
that this is possible only in the exceptional case mentioned 
above, namely, where two of the numbers f,gfh,k are equal. 
Barring this exceptional case we have then a unique system of 
values for e, a2, b2, c2, and d2\ but we can choose the signs of c 
and d. 

THE UNIVERSITY OF MICHIGAN 

ON T H E PHRAGMÉN-BROUWER THEOREM* 

BY W. A. WILSON 

1. Introduction. The purpose of this note is to give an ele­
mentary demonstration of the validity of the Phragmén-
Brouwer theorem in spaces satisfying certain conditions. This 
theorem has been proved and generalized by Urysohn and 
Alexandrofff for cartesian spaces by means of the theory of 
dimensionality, but the great importance of the theorem seems 
to the writer to justify the offering of another proof which in­
volves only the elementary principles of the point-aggregate 
theory. As is well known, to prove this theorem for a space is 
the same as demonstrating that, if m and n are any two points 
of the space and C is an irreducible cut between m and n, then 
C is a continuum. It is this form which will be used and the 
proof is deduced from the validity of the theorem in the euclid-
ean plane. 

* Presented to the Society, October 26, 1929. Shortly after the submission 
of the manuscript of this note to the editors, C. Kuratowski published another 
proof of this theorem in the Fundamenta Mathematicae, vol. 14, pp. 304-310. 
This paper was not withdrawn, because the great importance of the theorem 
seemed to the author to warrant the belief that another demonstration would 
not be void of interest to readers. 

f P. Alexandroff, Sur les multiplicités cantoriennes et le théorème dePhragmén-
Brouwer généralisé, Comptes Rendus, vol. 183, pp. 722-724. 


