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ON T H E LOCATION OF ROOTS OF POLYNOMIALS 
AND E N T I R E FUNCTIONS* 

BY E. B. VAN VLECK 

On account of its importance, the problem of the location 
of the roots of a polynomial occupies the central position in 
the theory of equations. For the most part the attention 
of mathematicians has been confined to the real roots of real 
polynomials—i.e., polynomials with real coefficients. So 
general has been the assumption of the reality of the poly­
nomial that it has often, unfortunately, not been stated 
in theorems in which it is vital; for example, when it is said 
that imaginary roots enter in conjugate pairs. Correspond­
ingly, the tools for the investigations were ordinary algebra 
and the calculus. When, however, one's thought is extended 
to the location of imaginary roots and to unreal polynomials, 
the border line is crossed, as the treatment involves almost 
inevitably considerations and methods belonging to the 
theory of analytic functions. It is in the overlapping region 
belonging alike to the theory of equations and that of 
analytic functions that we will stray today. 

After the notable advances of Budan, Fourier, Cauchy, 
Laguerre and others, investigation of the root-location of 
polynomials and entire functions was largely neglected for 
other work. With the new century has come a new activity. 
It is my pleasure to bring before you today some of the 
important advances made and some theorems discovered 
since 1900. This will, I hope, be the more profitable because 
the new results lie scattered and untied through the periodical 
literature and have not yet become a part of current texts, f 
Some of them, though little known today, are destined to 
become classic. 

* An address presented at the invitation of the program committee at a 
Symposium held at the meeting of the Society in Chicago, March 29, 1929. 

t Except Bieberbach's noteworthy Vorksungen uber Algebra, 1928. 
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Time limitations force me to omit certain aspects and 
developments which I had purposed originally to include. 
Reluctantly I omit inclusion of the line of work* inaugurated 
by Landau and Montel. The underlying thought in this 
work is to give p + 1 coefficients in an equation 

(1) Pn(z) = do + 0& + a2z
2 + • • • + anz

n = 0, (a0 ^ 0), 

leaving the other coefficients arbitrary, and to seek the limi­
tations thereby imposed upon the roots. Thus Montel 
supposes the first p+1 consecutive coefficients a0, * • • , ap 

to be given in this equation or, more generally, in one of any 
degree with n+1 non-zero terms, and shows that then the p 
roots of smallest absolute value are conditioned to lie in a 
circle whose radius depends only on the values of these given 
coefficients and on n. I omit also consideration of special 
kinds of polynomials, computational methods for cal­
culating the roots, polynomials with a parameter, chains 
of polynomials arising through continued fractions or other 
algorithms, extensions of Descartes' Rule of Signs or of the 
Hermite-Poulain Theorem, etc. I have not sought to give 
today an encyclopaedic report but rather so to select the 
material as to secure some unity of theme and thought. 

At the end of the report is appended a bibliography which 
includes also some omitted topics allied to those considered 
here. Literature references to the bibliography are indicated 
in the report by bracketed numbers. 

PART I 

One succession of modern theorems was inaugurated by 
the Gauss-Lucas Theorem on the location of the roots of the 
derivative of any polynomial, real or imaginary. This 
theorem, though so fundamental, is strangely enough but 
little known popularly. 

GAUSS-LUCAS THEOREM. If in the complex plane of 
z — x+iy we mark off the convex polygon whose vertices are 

* See the bibliography. 
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roots of a given polynomial and which contains either within 
or upon its boundary all other roots of the polynomial, then 
none of the roots of the derived polynomial will lie exterior to 
this polygon, and a root will f all upon its boundary only when 
coincident with a multiple root of the given polynomial on the 
boundary. 

This theorem was definitely stated and proved by Lucas 
[63] in 1879 and perhaps can be best known by his name, but 
it follows as an immediate corollary from an observation of 
Gauss [62] appended as a handschriftliche Bemerkung after 
a memoir in his Collected Works. Gauss says that the roots 
of the derivative of any given polynomial are the positions 
of equilibrium in a plane field of force created by placing 
unit-masses at the roots of the given polynomial which repel 
(or just as well attract) with a force inversely proportional 
to the distance. A mass r is, of course, to be placed at each 
r-fold root. For proof of this Equilibrium Theorem of Gauss* 
we have merely to observe that the roots of the derivative 
are given by the equation 

(2) ^ - Z - — - E - V = o, O'-i, •••,»), 
PnO) Z - <Xj fit** 

where the a,- are the roots of the given polynomial and the 
r3-, dj denote the lengths and arguments of the vectors drawn 
from these roots to a point z. Then, if each 63- is changed into 
— 6j to convert the terms into their conjugates, each term 
in (2) becomes a vector representing a force due to a unit 
mass situated at a, which repels inversely as the distance, 
and the equation gives the positions of equilibrium, where 
there is no force. Now it is obvious that if we produce any 
side of the convex polygon indefinitely and z is a point 
within the half plane not containing the polygon, the com­
ponents of force at z perpendicular to the side will all be 
directed away from the polygon, thereby reinforcing each 
other so that equilibrium at z is impossible. Like considera-

* Rediscovered by Lucas, Comptes Rendus, vol. 89 (1879), pp. 224-226. 
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tions apply when z lies on a side and is not coincident with 
a root of the given polynomial. The theorem of Lucas thus 
follows as a corollary. 

Beside this theorem of Gauss-Lucas we may now place a 
beautiful result published without proof by Jensen [72] in 
1913, which gives much more definite information regarding 
the derived polynomial when the given polynomial is real. 

JENSEN'S THEOREM. If circles are described having as 
diameters the segments connecting pairs of conjugate roots of 
the given polynomial, then no imaginary root of the derivative 
of the polynomial can lie exterior to all these circles. 

The first published proof [73] of this theorem we owe 
to Walsh (1920-1921); it is likewise based on the above 
Equilibrium Theorem of Gauss. Walsh sets a repulsive unit-
mass at each root of the given polynomial and shows tha t 
at any point not on the real axis and exterior to the circle 
having as diameter the segment joining a pair of conjugate 
imaginary roots CLJ, a,-, the net force due to the masses at 
these two points will have a non-vanishing component per­
pendicular to the real axis and directed away from this axis. 
The like is obviously true of the repulsive force due to the 
masses upon the real axis. Hence at any point exterior to 
all the Jensen circles and not on the real axis these com­
ponents reinforce one another and equilibrium is impossible. 
Consequently no imaginary root of the derived poly­
nomial can lie exterior to all the Jensen circles. Walsh 
apparently did not notice that the introduction of repulsive 
masses was an unnecessary trapping and that without es­
sential modification the proof could be thrown into the fol­
lowing elementary form [74], quite possibly that of Jensen 
himself. Let a = /3+iy, â =/3 — iy be a pair of conjugate imagi­
nary roots of Pn(z)- The corresponding component in (2) is 

1 1 

(x + iy) — (0 + iy) (x + iy) — (0 — iy) 

2(x - p) [(x - ff)2 + y* + T23 ~ 2iy[(x - ff)2 + y2 - Y2] 

K*-P)* + (y-yy] • [(x-P)2 + (y + yy] 
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The coefficient of i is opposite in sign to y if (x 
> 0 ; that is, when z lies outside the circle (x-
For a real root /3 the component is 

1 (x — (?) — iy 

x + iy — p (x — /3)2 + y2 

which also has a sign opposite to that of y for the coefficient 
of i. Hence at any point exterior to all the Jensen circles and 
not on the real axis the coefficient of i in PI /Pn does not 
vanish. This proves the theorem. 

Walsh supplements Jensen's Theorem by showing that in 
any segment of the real axis which is free from roots of the 
real polynomial Pn(z) and which does not penetrate into 
any of its Jensen circles there can lie at most only one root 
of its derivative Pn ' (2). Further, if any Jensen circle has no 
point in common with any other Jensen circle in part ex­
terior to it and contains exactly k roots of Pn(z), then it 
will contain at least k — 1 roots of its derivative and at most, 
k + 1 roots. I may add that I find that if we amalgamate 
each series of overlapping circles into a single connected 
region so as to form Jensen regions exterior to one another, 
the conclusion still holds with respect to these regions. 

These results can be readily established analytically 
without following the Gaussian suggestion of introducing 
repulsive masses at the roots of the given polynomial, but 
tha t method is undeniably illuminating and suggestive, and 
has the advantage of being independent of the selection of 
the coordinate axes. Bôcher [68] applied the method to 
the Jacobian 

I dtf> 50 I 

dz\ ÔZ2 

I dzi ÔZ2 I 

of two binary forms 4>Pl{z\y z2), ^p2(
zh 22) of degrees pi and 

p2 respectively. I t is easy then to see that the roots z=Zi/z2 

-P)2+y2-y2 

-j3)2+3>2 = 7 2 . 
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of'the Jacobian, other than multiple roots of either form or 
common roots of both forms, are the equilibrium positions in 
a field of force due to unit masses placed at the roots of cj> 
and of ^ which respectively attract and repel with a force 
inversely proportional to the distance. Continuing the ap­
plication, Walsh has made an extended study of the location 
of the roots of the Jacobian. In a number of memoirs he has 
also applied the Gaussian idea to derive some nice theorems 
relating to the roots of the derivative of a polynomial. For 
example, he shows [71 ] that if mi roots of a polynomial lie 
in a circle of radius r\ and center a\ and all the remaining 
W2 roots lie in a circle of radius r% and center «2, all the roots 
of the derivative lie in these two circles and a third circle 
whose center is (wia2+m 2ai) / (wi+^2) and whose radius is 
(mir2+m2ri)/(wi+m2) . If, furthermore, these circles are all 
external to one another, then the three circles contain re­
spectively wi— 1, m2— 1, and one root respectively. 

I may add that the Gaussian method and various resulting 
conclusions—for example, Lucas and Jensen's theorems— 
apply not only to the derivative of the given polynomial 
Pn{z) but also to any polynomial ^n-i(s) of degree n — 1*, 
for which we have a decomposition into partial fractions of 
the form 

ypn-x(z) » A, 

Pn(Z) * _ i Z — OLj 

in which the A}- are all positive. 
The next theorem which I wish to cite relative to the roots 

of the derivative of a polynomial is due to Grace and arose 
from an at tempt to obtain a generalization of Rolle's The­
orem valid for two unreal roots of a polynomial. According 
to Rolle's Theorem, if a real polynomial vanishes at two dif­
ferent points of the real axis (or has the same value at these 
points), there will lie at least one root of its derivative be­
tween them. Thus two real roots of a real polynomial fixate 

* For extension of the Jensen Theorem, the polynomial ^n-i(z) is, of 
course, to be taken real as well as Pn(z). 
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one root of the derivative. In what direction should one look 
for a corresponding result for imaginary roots and unreal 
polynomials? Doubtless this question occurred to others 
before Grace, and we may conjecture that it was on account 
of its difficulty that no answer was obtained till the present 
century. In November 1901, in a notable five-page article 
[75], Grace obtained the following important and strange 
theorem. 

THEOREM OF GRACE. If a and b are any two roots of any 
polynomial, real or unreal, of degree n, then within or on a 
circle having the center (a + b)/2 and a radius one-half of 
\a — b\ ctn (w/n) there will be at least one root of the derived 

polynomial. 

This can scarcely be called a generalization of Rolled 
Theorem inasmuch as it does not reduce to Rolle's Theorem 
for the special case of a real polynomial with two real roots. 
Further, in anticipation of the second part of my report to­
day, I may add that it is not a theorem that admits of 
extension to entire functions, since as n increases indefinitely, 
the radius of the circle also increases indefinitely. No in­
formation could therefore be afforded regarding the deriva­
tive of the given entire function except that it had a root 
somewhere in the complex plane. But this conclusion would 
be false since the entire function ez — 1 has a periodic system 
of zeros, while its derivative is devoid of zeros. 

Grace's proof of his theorem was essentially invariantive 
in character. If in an algebraic equation 

(1) Pn(z) s aQ + axz + a2z
2 + • • • + anz

n = 0, 

we put z = xi/x2, the left-hand member after dropping the 
denominator is converted into an algebraic form in #iund 
#2. If we take a second equation 

(3) bo + hz + btf? + • • • + bnZ» = 0, 

the two equations may be said to be apolar when the cor­
responding bilinear forms are apolar; that is, if their coeffi­
cients are connected by the equation 
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(4) a0bn — —aibn-i + —a2bn-.2 — • • • + (— l)nanbQ = 0. 

Starting from Lucas' Theorem, Grace first establishes be­
tween two apolar equations a most important and far 
reaching relation which I shall term Grace's Apolarity 
Theorem. 

GRACE'S APOLARITY THEOREM. If two algebraic equations 
are apolar, then any circle in the z-plane which contains all 
the roots of either equation will contain at least one root of the 
other. 

The term circle is here to be understood in the sense of the 
theory of functions and may be indifferently the closed 
interior or the closed exterior of a circle, or a half plane 
inclusive of its boundary. 

I t will be noticed that if any two of the equations (1), 
(3), (4) are given, we can immediately write down the third. 
Hence the theorem says that if any algebraic equation (1) 
is given whose coefficients are connected by a homogeneous 
linear relation (4), we can immediately write down a third 
equation (3) such that every circle which contains all the 
roots of (1) will contain at least one root of (3), and re­
ciprocally. 

Grace applies this thorem to the derivative of (1). If we 
substitute in (1) any two of its roots a and j8 and subtract, 
we obtain a homogeneous linear relation 

ai(a - P) + a2(a
2 - 02) + h an(a

n - $n) = 0 

between the coefficients of the derived equation. The equa­
tion (3) which corresponds to this linear relation is 

(an - pn) - nia"1'1 - pn~x)z + C2
M(an~2 - Pn~2)z2 + • • • 

+ ( - \)n-lC?(a - p)zn-1 = 0, 
which may be written 

(5) (a - z)n - (/J - z)n = 0. 

Hence at least one root of the derivative PI (z) must lie in 
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any circle containing all the roots of (5). By extracting the 
nth root in (5) we get for its roots 

jôcoj — a 
z = - , (J = 1,2, • • - , n- 1) 

0)j — 1 

where co,- = cos(2jw/n)-\-i sin(2jw/n) denotes an nth root 
of unity. This can be easily reduced to the form 

a + /3 .<*-/? / /V \ 

2 2 \n) 

which shows that the n roots of (5) all lie on a straight line 
perpendicular to the segment joining a and /3 at its middle 
point. The most remote of these roots is at a distance 
one-half of \a~ft | ctn {ir/n) from this middle point. Conse­
quently a circle described around this mid-point as center and 
with a radius equal to this distance contains all the roots of 
the equation (5) apolar to the derivative Pn'{z) and hence by 
Grace's apolarity theorem encloses at least one root of P„' (2). 
Thus two roots a and /3 of a given polynomial fixate one root 
of the derivative in the manner stated. 

In 1907 this theorem was re-derived, apparently inde­
pendently, by Heawood [76]. He noted the fact that for 
n > 3 the region in which lies at least one root of the deriva­
tive need not be extended equally in every direction from 
the center (ce+/3)/2 to the perimeter of the circle. When 
w=4, the minimum region is that covered by two circles of 
radius one-third of \<x—j8 |ctn(7r/w) and having their centers 
on the perpendicular to the segment joining a and /? at its 
middle point and at a distance one-sixth of \a—/3 |ctn(7r/w). 
For greater values of n the form of the curve bounding the 
region is very complicated and scarcely specifiable. Heawood 
established Grace's Theorem by showing that the root of the 
derivative nearest to the mid-point (ce+/3)/2 attains its 
maximum distance only when all the roots of the derivative 
are equal; that is, only when Pn(z)^c(z — y)n"1

1 so that we 
may write Pn(z)=c(z — y)n/n+ci. Substituting the roots a 
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andjSin turn, we find (a-~y)n^fï — y)n, and 7 is consequently 
a root of equation (S). The theorem then follows as before. 

The most interesting successor of Grace's memoir is one 
published in 1922 by Szegö [77] with the modest title: 
Bemerkungen zu einem Satz von J. H. Grace ueber die Wurzeln 
algebraischer Gleichungen. He derives Grace's Theorem on 
apolar polynomials on the basis of what he calls a Fal-
tungssatz, which I shall call his Coincidence-Theorem. This 
runs as follows. 

SZEGÖ'S COINCIDENCE THEOREM. If Si denotes the sum 
of the products of zi, Z2, - - - , zn taken j at a time and these 
are any n quantities satisfying the equation 

(6) a0 + aiSi + • • • + anSn = 0, 

then any circle which contains all the roots of the equation 

(7) aQ + Cx
n ai* + C?a2z

2 + • • • + anz
n = 0 

will contain at least one of any of the n quantities satisfying (6). 

I t will be noticed that equation (7) results from (6) when 
the Zj are all coincident. Szegö's proof, not altogether easy, 
is by means of mathematical induction. An obvious conse­
quence of his theorem is that if any set of the z3- satisfying (6) 
all lie in (that is, on or within) a circle, not all the roots of 
(7) lie without. We have thus Walsh's theorem. 

THEOREM OF WALSH. If any circle contains a set of values 
of zi, • - - , zn satisfying (6), it must contain at least one root 
of (7). 

This result, in a somewhat different formulation, was 
published almost simultaneously as Theorem I and the "main 
result" of one of Walsh's principal papers [78] and was 
established by geometrical considerations involving con­
tinuity. It is not, however, to be regarded as a subordinate 
corollary of Szegö's Theorem, inasmuch as the latter is ob­
viously also an immediate corollary of the former. The 
relation of the two theorems was not pointed out by Walsh. 

The usefulness of the Szegö-Walsh Theorem is revealed 
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by very different sets of theorems which the two authors 
rapidly deduce from it. I have time to mention only one or 
two of each. As a typical theorem of Walsh, I select the fol­
lowing [78, p. 173]: Let 

(8) (s - ai)(* - «2) • • • (s - an) - A = 0 

be an equation with a parameter A ; then if «i, • • • , an are 
all situated in a circle of radius r and center a, the n roots of 
(8) will all be contained in n circles whose centers a+Alln 

form a regular polygon with center at a and which have the 
common, radius r. If none of these circles overlap, there will 
be just one root in each circle. The second of his theorems 
which I wish to cite is a special case of his "Main result" 
and is set off as his Theorem II.* This says that "if the points 
«i, «2, • * * > oik He in a circular region C and if z is any point 
exterior to C, the root of the equation in a 

1 1 1 k 

(9) + + z — « i z — 0C2 z — oik z — a 

lies in C " Rephrased in the language of Gaussian attractions, 
it asserts that when unit masses are placed at k points 
ai, • • • , ah lying in a circle and the entire mass k is then 
concentrated at a single point a so as to produce the same 
resultant force at a given exterior point z, the point a must 
lie somewhere in the circle. 

I have cited this second theorem of Walsh because, in 
considering a very different matter, I have been led to the 
same equation but with z as the unknown in place of a. If 
a polynomial equation Pn(z) = 0 and its first derived equation 
are both transformed by the same entire linear substitution 
2 = a 0 ' + ô, they pass over into a new equation and its first 
derived equation. This is not the case when a fractional linear 
substitution 

az' + b 
(10) 2 = = _ ^ ( c ^ O ) , 

cz' + d 

* Curtiss [78a] points out that the theorem is a "result which Laguerre 
expressed in homogeneous coordinates." 
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is applied. Nevertheless, various theorems regarding the 
location of the roots of a polynomial and its derivative may 
continue to hold in the transformed region with respect to 
the transformed polynomial and its derivative. Consider, 
for instance, a theorem less specific than the above Gauss-
Lucas Theorem, according to which a circle or half-plane 
which contains all the roots of Pn(z) also contains all the 
roots of its derivative. Apply now the transformation (10). 
In place of Pn(z) we get the new polynomial 

/az' + b 
(11) Qn{z') EE (CZ' + dyPj-y--

\cz + d 
Suppose that the transformation converts the interior of the 
circle or half-plane into the interior of a new circle C'. Then 
the new circle which necessarily contains all the roots of 
Qn (z) will contain also all the roots of Qn (z). The like con­
clusion fails, however, when the transformed region is the 
exterior of C'. Similarly, if Jensen's Theorem were not in­
validated by a transformation converting the half-plane into 
the interior of C", we would have the following conclusion: 
When the roots of a polynomial Qn(z) which do not lie on the 
perimeter of a given circle C' are pairs of roots of equal 
multiplicity symmetrically located* with respect to C', all 
the roots of its derivative not on the circle must lie in the 
circles whose diameters are the segments joining the pairs 
of symmetrically situated roots. It is easy to show the falsity 
of such a conclusion by an example to the contrary. Jensen's 
Theorem, however, is an immediate result of two applications 
of the following true statement: The roots of a real poly­
nomial which do not lie in a half-plane bounded by a real 
axis lie in the Jensen circles. The corresponding statement 
after the above transformation is that when a polynomial 
Qn(z) has its roots located in the manner just explained, the 
roots of the derivative so far as they do not lie on or within 

* Two symmetrically situated points are inverse points with respect to 
the circle. 

• 
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C' must lie in the circles whose diameters are the segments 
joining pairs of symmetrically situated roots of Qn(z), and 
the validity of this statement has been established by Walsh 
through the method of repulsive particles. 

These examples suffice to show the need of some criterion 
for determining whether a theorem regarding the mutual 
location of the roots of a polynomial and its derivative will 
hold also for the transformed polynomial and its derivative 
after a transformation (10). To answer this question, suppose 
Pn(z) replaced by (11) in consequence of the transformation 
(10). The new derived equation is 

(az' + b\ 

\cz + a/ 
faz' + b\ 

+ (ad - be) • (czr + dy-*Pn' ( — ; ) = 0, 
\cz + a/ 

which may be successively written 
nc(cz' + d) PI (z) __ 

ad — be Pn(z) 
and 

n _ 1 
(12) + Z = 0, (*= 1, • - . , n) , 

a z — ai z — 
c 

where the ai are the roots of the original polynomial P n(s) . 
I t thus appears tha t the new derived equation Qn(z')=0 
results by application of the linear transformation (10) to 
the polynomial equation (12). Now (12) is Walsh's equation 
(9) regarded as an equation of (n — l)th degree in z with 
given ai and a. I t may be written in the form 

(12a) nPn(z) - (z - a)P»'(*) = 0, 

where a denotes the point z=a/c which by the transforma­
tion passes over into 2' = 00. For given a, there corresponds 
to each pair of polynomial equations 

Pn(z) = 0, <2n-i(s) =nPn(z) - (z-a)P'n{z) = 0, 
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a class of substitutions (10) with a/c = a which replaces them 
by a polynomial equation Qn{zr) = 0 and its first derived equa­
tion. Conversely, for the latter pair, there is a class of 
(inverse) substitutions which replaces them by pairs 
Pn(z) = 0 , Qn-i(z) = 0 with given ex. 

The question whether a theorem regarding the root loca­
tion of Pn(z) and its derivative is valid after the transforma­
tion for Qn(z) and its derivative therefore reduces to the de­
termination whether the original theorem is valid for Pn(z) 
and <2n-i0s) before the transformation as well as for Pn(z) 
and Pn(z). I t will be observed that a may have three 
qualitatively different positions with respect to the interior 
of a circle or half-plane. I t may lie without, within, or on its 
boundary. If this interior is to be transformed by (10) into 
the interior of a new circle C", the point a must be taken with­
out the circle C or the half-plane, since it passes over into 
z' — oo. 

So far as I know the above relationship has not been 
previously pointed out. I find, however, that Gonggryp [99 ] 
has considered the polynomial nPn(z) — zPn (z) which arises 
by application of z = 1/V to P n ' (z). He calls it the "réduite" 
of Pn(z) and gives several theorems relating to its roots. 

As an example of the general interrelation just pointed out, 
let us take Walsh's "Theorem 2" previously cited, which says 
that when z is exterior to a circle containing all the roots 
of Pn(z), the point a = a/c in (9) must lie in the circle. The 
word circle has here the general sense of the closed interior 
or exterior. An equivalent statement is that when the roots 
of Pn(z) are all in the circle and a/c lies without, the s-roots 
of (12) must all lie in the circle. By the transformation (10) 
this gives the restricted Lucas Theorem that when a circle 
contains all the roots of a polynomial Qn(z')> it contains also 
the roots of its derivative. Conversely, Walsh's Theorem fol­
lows from this by the inverse linear transformation. 

I have not time to follow the matter further but return now 
to the Coincidence Theorem of Szegö. It has been already 
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noted that he uses it to obtain Grace's Apolarity Theorem. 
His easy deduction is reversible, so that the two theorems, 
so very different in appearance, are equivalent. Szegö then 
goes on to obtain in an interesting manner a wealth of 
theorems. The only one of these which I shall cite is a the­
orem of Egervâry: 

THEOREM OF EGERVÂRY. Let 

(13) A(x) = a0 + dnaiz + C2
na2z

2 + • • • + anz
n = 0, 

(14) B(x) =b0 + Crbiz + C?b2z
2 H h bnz

n = 0 

be two equations whose roots all lie in {within) the unit circle. 
Then the roots of the composition-equation 

(15) C(x) = a0b0 + C^aJiZ + • • • + anb„zn 

all lie in (within) the same circle. 

For proof [77], denote by /3h /32, • • • , j3«the roots of (14), 
and by £ any root of (15), so that 

(16) a0bo + CfaM + CfaJ>£* + • • • + anbn^ = 0. 

Then if we substitute — %/z for z in (14), the resulting equa­
tion has the roots —£/j3i, • • • , — £/j3n. The condition that 
this equation and (13) shall be apolar is precisely the equa­
tion (16). Then by Grace's apolarity theorem some one of 
these roots, say —£/&, must lie in the unit circle when all 
roots of (13) so do. This is impossible if £ lies without 
(respectively without or on) the unit circle, since | j 3 ; | ^ l 
(respectively |j8»-|<l) by hypothesis. The theorem there­
fore follows. 

If we restrict the hypothesis further and suppose that all 
roots of (13) and of (14) lie on the perimeter of the unit 
circle, then in applying the theorem just proved, we can 
take at pleasure the circle to be the interior or the exterior 
of the unit circle. It follows that no root of (15) can lie 
without, respectively within; consequently the roots of the 
composition equation will lie on the perimeter of the unit 
circle when those of (13) and (14) do. 
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Very similar in character are theorems given by Malo* 
(1895) and Schur (1914). Malo's theorem [88] says that 
if the roots of both of the equations 

(17) a0 + axz + h amzm = 0, 

(18) bo + bxz + • • • + bnz
n = 0 

are all real and those of the former are all positive or all nega­
tive, then the roots of the composition equation 

(18a) a0bo + aibiz + • • • + akbkz
k = 0, 

in which k denotes the smaller of the two degrees m and n, 
are also real ; furthermore, they are all different if a0&o^ 0 
and n^m. Schur [90 ] draws the same conclusion for another 
composition equation : 

a0b0 + 1 W I 2 + 2\a2b2z
2 + • • • + k\akbkz

h = 0. 

If now we look upon (17) as any arbitrarily given equation 
with real roots of like sign, we may regard &0, 6i, • • -, bn as 
a set of multipliers which by composition with (17) will 
always produce an equation (18a) with only real roots. 
Pólya and Schur [92] call any sequence of real multipliers 
with this property a factor sequence of the second kind. A 
sequence of real factors 

(19) io,Ji,&2, • • • 

is said to be of the first kind when operating on all equations 
(17) with real roots (« = 1, 2, • • • ) they produce only com­
position equations (18a) with real roots. Laguerre in his 
memoirs gave various special sequences with such properties ; 
for instance, 

i,q,q4,q9,qm, • • • , \q\ ^ i , 

is a sequence of the first kind. Pólya and Schur make a most 
interesting study of the conditions which must be imposed 
upon the infinite set (19) of real numbers to furnish a se-

* Malo's theorem is extended by Jensen [72] to series. 
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quence of the first or second kind. If, for example, (19) is 
a sequence of the first kind, all non-zero elements must form 
a single uninterrupted succession, finite or infinite in length, 
the terms of which are all of same sign or of alternating sign. 
The two authors obtain both an algebraic and a transcenden­
tal necessary and sufficient criterion that it shall be a factor 
sequence of the first or second kind respectively. According 
to the algebraic criterion, (19) is a factor sequence of the 
first kind if and only if all roots of the equations 

b0 + C?b1z + Cfb#* + • • -+C£bnz
n = 0, ( « = 1 , 2 , 3 , • • •), 

are real and of like sign, while it is one of the second kind 
when they are merely real. By the transcendental criterion 
it is necessary and sufficient that the real series 

b\ b<i bz 
6 o + _ z + _ 2 2 + _ 2 3 + . . . 

should converge for all values of z and represent an entire 
function which has only roots of the same sign and is of genre 
0 except for a possible factor eyz, in which 7 has the sign 
opposite to that of the roots. For a factor sequence of the 
second kind this series must be of genre 0 or 1 except pos­
sibly for a factor e~^z2 (7 real) and have only real roots. 

Somewhat earlier Petrovitch [91 ] considered factor se­
quences (19) having the property that when operating upon 
real polynomials of even degree possessing only imaginary 
roots they produce always polynomials without real roots. 
A class of sequences specified by him with this property has, 
when somewhat restricted, the form 

bn = ƒ f(t)t»dt, (n= 1,2, • * • ) , 

where c and d are arbitrary fixed real limits independent of 
n and ƒ(/) is an arbitrary real function of invariable sign 
between c and d. For if for m = 2wwe denote the polynomial 
(17) by P2m(z), the composition equation will be 
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0 = a0bo + ajiz + • • • + anbnz
n = I f(t)P2n(tz)dt, 

which can not be satisfied for any real value of z inasmuch as 

both factors of the integrand are of invariable sign. A special 

set of factors is also obtained by putting bn = n\. 

PART II 

An infinite series ao+aiZ+a2z
2 + • • • convergent over 

the entire finite plane of z is, in a certain sense, a generaliza­
tion of a polynomial of the wth degree ao+aiZ + • • • +anz

n. 
We call it an entire function. The futility of efforts to carry 
over theorems regarding polynomials to entire functions 
without restriction upon the latter is, I suppose, well known 
to you. A familiar example is afforded by the Fundamental 
Theorem of Algebra. Though a polynomial of nth degree 
has n roots, an entire function need not have any zeros at 
all. The familiar exponential function ez — 1+z+z2/2\ + • • • 
is an example of such an entire function. Again, take the 
familiar theorem that if a polynomial has only real roots, its 
derivative has only real roots. By contrast, (z+l)ez is a 
real entire function whose only zero z= — 1 is real, but its 
derivative (2z2 + 2z+l)ez2 has two imaginary zeros [132]. 
The question therefore arises : What sort of limitations must 
be imposed upon entire functions to enable us to extend to 
them our theorems on the location of roots of polynomials? 

Investigation in this direction was inaugurated by 
Laguerre in the 80's or earlier. Since then little advance has 
been made until recently when some very interesting ex­
tensions have been obtained, notably by Pólya. Before 
reporting on these I must recall to you certain results and 
ideas familiar to the analyst. First of all, I must mention the 
theorem of Hurwitz that when a sequence of polynomials 
Pn(z), (n = l, 2, • • • ), or analytic functions converges uni­
formly over a closed region, the roots of the limiting analytic 
function within the region are the limits of the zeros of the 
polynomials in the sequence. In the vicinity of a p-îo\d 
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root of the limit lie exactly p roots of Pn(z) for sufficiently 
large values of n. An interesting application of this indispen­
sable theorem is to the exponential series: in any given 
finite region of the plane there can lie no roots of the sum 
Sn{z) of the first n terms for sufficiently large values of n. 

Next, I must mention Laguerre's concept of the genre of 
an entire function. According to Weierstrass's Factor-
Theorem every entire function can be factored into the 
uniformly convergent form : 

(20) 

where 

F(z) =e<>Wzrfl ( l - — )eH*(*\ 
n=l \ dn/ 

z 1 / z V 1 / z \m-
#»(*)=- + - ( - ) + • • • + - ( - ) , 

and where G(z) is an entire function, polynomial or constant, 
r is a non-negative integer, and mn is an appropriate positive 
integer which may increase indefinitely with n. When the 
degree mn is limited and G(z) is a polynomial, the function is 
said to be of finite genre, the genre p being then the highest 
(necessary) degree in the exponents of e within or without the 
product sign. The entire function (20) differs in structure 
from a polynomial by the presence of exponential factors. 
Hence, as Borel has remarked, one may expect that the 
properties of entire functions will depart more and more 
from those of polynomials as we increase the degree of the 
exponential factor. 

For p — 0 we have 

F(z) = Czr 

\ an/' 
so that 

dlogF(z) F\z) r _ 1 
(21) ^ - - ^ - 7 - = - + E 

dz F(z) z z — an 

where II and S are uniformly convergent over any closed 
finite region of the plane not containing any roots an of the 
entire function. Correspondingly, we have for p = l, 
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F{z) = Cie^zrJ[(l - —V /a"> 
\ dn/ 

F\z) r _ / 1 1 \ 
(22) ^-^ + _ + W + _ ) ; 

and for p~2, 

F'(z) r _ / 1 1 2 \ 
(23) - ^ = c" + 2c'* + - + E ( + - + - ) • 

F(2) 2 \z — an an an
2/ 

When F(z) is a function of finite genre and its Weierstrassian 
product (20) is devoid of the plaguy exponential factor before 
the product sign,—that is, when G(z) is a constant—we call 
the function primitive or canonical. 

We are ready now for the extension of polynomial theorems 
to entire functions. Consider first the simple theorem tha t 
when the roots of a polynomial are all real, the like is true 
of the derivative. The simple example already given shows 
that this may fail for an entire function of as low genre as 2. 
In the case of the real polynomial with only real roots we 
locate all the n — 1 roots of the derivative by Rolle's Theorem 
which puts one between each two successive roots of the 
given polynomial, but the argument fails in the case of a 
real entire function because the derivative of an entire 
function may have an infinite number. In the case of real 
entire functions of genre 0 or 1 the result is still valid. For 
first, it can be established that there can be no imaginary 
roots of F'(z), either by applying the equilibrium theorem of 
Gauss to the right-hand members of (21) and (22) or, what 
amounts to the same thing, by observing that the sign of the 
imaginary component of each term is opposite to y in 
z**x+iy, since c and the an are real, so that F'(z) will not 
vanish unless ;y = 0. Next, if we differentiate the right-hand 
members of (21) and (22) their terms will all be negative 
for a real value of z. Consequently Ff(x)/F(x) is a monotone 
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decreasing function of x, and can vanish but once between 
two successive roots of the denominator F(x). Thus the roots 
of the derivative of a given real entire function of genre 0 
or 1 are all real and alternate with those of the function 
itself, as in the case of a given real polynomial. 

The argument just indicated fails in the case of entire 
functions of genre 2 because of the additional terms intro­
duced in (23). When, however, c' is negative and II is a 
canonical product of genre 1 or 0 so that the term (z/an)

2 

is lacking in 2), the argument carries through. We are led 
thus to pick out the same special class of functions of 
genre 2 which we ran across at the close of Part I, namely, 
real entire functions which are of genre 0 or 1, except for an 
exponential factor ec'z in which c' is negative. 

I digress a moment at this point to mention a more general 
result tha t was just obtained. A real entire function of 
genre p with q imaginary roots possesses a derivative of the 
same genre which in addition to the roots accounted for by 
the theorem of Rolle can have at most p+q imaginary and 
other real roots. A rigorous proof of this theorem of Laguerre 
is given by Borel [132 ]. 

I pass next to the consideration of another noteworthy case 
in which the derivative of the real entire function F{z) 
possesses only real zeros which alternate with those of F(z) 
on either side of the origin. It is that in which F(z) is a 
canonical function, limited by a restriction placed upon it 
which at first sight appears very curious, viz., that it shall 
have no zero at the origin. The result is discussed in Vivanti's 
1907 report on entire functions but without attributing it 
to any particular person. I find it established in a paper 
[133] of Cesaro (1884) not mentioned in Vivanti's bibli­
ography, Cesaro's exceedingly simple proof is as follows: 
For every zero of the derivative of such a canonical F{z) 
of genre p we have 

F\z) _ / 1 1 z z*>~ 
0 = ~ 7 7 = Z ( + - + - T + • " + 

F(z) i \z — on a{ a* a? 
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which may be written 

(24) o = «* Z - T ~ — T • 
i a f (z — a-) 

Now when all the roots ai of F(z) are real and the genre 
p is an even integer, the coefficient of i in every term 
of 2 in (24) has a sign opposite to that of y. Therefore the 
equation can not be satisfied for an imaginary value of z. 
On the other hand, if p is an odd integer, we may put the 
equation into the form 

(25) o = * * £ — - - , 
i a*+1(z - at) 

and then the same conclusion follows, inasmuch as for real a 
the imaginary part of the coefficient of az/(z — a) is 

ia2y 
— ; 

(x — a)2 + y2 

which again is opposite in sign to y. In consequence, Ff{z) 
has no imaginary roots. Furthermore, the derivative of each 
term under the summation sign in (24) for even p and in (25) 
for odd p is negative for real z^ai. In each case 2 is there­
fore a monotone non-increasing function and consequently 
between any two roots a* of F(z) on the same side of the 
origin there lies one and only one of its derivative. 

It must not be thought that the conclusions obtained con­
cerning the reality of roots of the derivative will carry over 
to higher derivatives, for the suppositions underlying the 
proof regarding the given entire function ordinarily do not 
hold regarding the derivative. If, for instance, the given 
function is canonical, the derived function is not necessarily 
so. Again, a function of genre p has a derivative of genre p 
at most, and an example has been given of a function 
of genre p with a derivative of genre p— 1. The question 
therefore arises: What are then the necessary and sufficient 
conditions to be imposed upon a given entire function 
possessing only real roots in order that its derivatives of all 
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orders shall likewise have only real roots? This very difficult 
question has recently been tackled by Pólya. 

The nature of the answer seems to have been suggested 
by the following theorem. 

THEOREM OF LAGTJERRE.* If a sequence of polynomials 
whose roots are all real converges over every finite region of the 
z-plane,^ the limit of the sequence is an entire function of genre 
0 or 1, {by the above theorem of Hurwitz, possessing only real 
zeros), or the same multiplied by a factor ecz% in which c is real. 
Furthermore, if the roots of the polynomials are all of like sign, 
the limit, except for a possible factor eaz with real a, will be a 
function of genre 0 {possessing only roots of the same sign). 

This theorem and others to be presently mentioned seem 
to me noteworthy in that they establish the genre of the 
function not on the basis of the asymptotic character of the 
coefficients or roots but by use of functional properties. 

The derivatives of the polynomials in the theorem are of 
the same character as the polynomials themselves, having 
likewise only real roots (respectively real roots of the same 
sign),and also by a well known theorem on analytic functions 
converge uniformly over every finite region of the £-plane. 
The conclusions of the theorem can therefore be applied to 
succeeding derivatives of the entire function. Thus on the 
given hypothesis all derivatives have only real roots (re­
spectively real roots of the same sign). 

This application of Laguerre's Theorem stops short, how­
ever, of answering the question proposed. For, on the one 
hand, we are not sure that all real entire functions with real 
zeros are obtainable as limits of sequences of polynomials 
with real roots. On the other hand, there exist unreal 
entire functions possessing only real zeros. To get such a 
function we have merely to take in (20) an unreal G{z) along 
with a canonical product II having only real zeros. Further-

* Oeuvres, vol. 1, 1882, pp. 174-177. 
t Apparently uniform convergence is intended. 
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more, the possibility that all the succeeding derivatives 
should have only real roots, if any, can be actually realized. 
The function c'{eihz — c), in which we take b real and \c | = 1, 
is an unreal entire function possessing an infinite periodic 
system of real zeros and no others, while its successive 
derivatives have no zeros at all. I t is easy to see that it is 
of genre 1. Pólya cites c'eicz (c real) as a second instance, 
this being an unreal function which with its successive deriva­
tives is devoid of imaginary zeros. He [120a] conjectures 
that with just these two exceptions all entire functions which 
together with their derivatives have only real zeros must be 
of the form 

(26) cz'e-v**2*** 1 1 ( 1 ~ dnz)edn% 

in which all constants except c are real and 2dw
2 is conver­

gent. Note that we have here exactly the first kind of 
functions mentioned in the above Theorem of Laguerre with 
the added restriction that the coefficient of z2 in the exterior 
exponential factor is negative or zero. This conjecture 
Pólya was able to prove on the supposition that the entire 
function is of finite genre and has only a finite number of 
zeros. I t can then be written in the form eQ(z)P(z) where P 
and Q are polynomials, so that we have then a purely 
polynomial problem. He showed further that when all the 
roots of the entire function (except 2 = 0) are of positive sign, 
we must take 7 = 0 and a non-positive d\ accordingly the 
function except for such a possible exterior factor edz is of 
genre zero. In 1923 Alander [124] extended this conclusion 
to any entire function of finite genre without the limitation 
to a finite number of zeros. This he did by showing that 
the function of finite genre, unless it has one of the two ex­
ceptional forms above noted, can have only a finite number 
of zeros, so that Polya's conclusion is applicable. 

The sufficiency of the form (26) for the reality of the roots 
of all the successive derivatives Pólya established neatly by 
setting up a sequence of polynomials 
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/ 72An 

*»(*) = cz'll J 

•( 1 + ) 11(1 - dvz), {n = 1,2, • • •), 
\ mn / v^i 

which with proper choice of the positive integers mn con­
verge uniformly to the function (26) in every finite region 
of the 2-plane. The character of the limiting function then 
follows by Laguerre's Theorem given above. 

I t is interesting to note another closely related result of 
Pólya [136 ]. When the entire function has the form eQiz)P(z) 
in which Q(z) and P(z) are polynomials, the number of imagi­
nary roots of its nth derivative increases indefinitely with n 
if Q{z) is of higher degree than 2, and likewise if it is of degree 
2 unless the coefficient of z2 in Q(z) is negative. 

The interesting theorem of Laguerre above quoted was 
based upon the hypothesis of a sequence of polynomials with 
real roots which converged uniformly in every finite region of 
the plane. Pólya [120b] has notably lightened the hypothesis 
by showing that it is sufficient to demand that they converge 
uniformly in some finite region containing the origin. One 
thinks here of Stieltjes's Theorem that if a sequence of 
analytic functions converges uniformly in any given region 
and is bounded in absolute value over any larger region 
embracing the given region, then it also converges uni­
formly over this larger region. Pólya does not use this 
theorem but is able to base the extension of the region of 
uniform convergence directly upon the reality of the roots 
provided the limit is not identically zero. In a subsequent 
paper [130 ] he lightens even this latter requirement and 
asks only that the roots of the polynomials shall all lie within 
some sector having its vertex at the origin. 

When the polynomials under consideration are segments 
Sn(z) ~a0+aiz+ - - • +anz

n of a power series, these results 
of Pólya follow immediately from a remarkable theorem of 
Jentzsch [141]. If, namely, the series has a finite radius of 
convergence J R > 0 , every point of the circle of convergence 
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is a limit point of the set of roots of the equations Sn(z) = 0, 
(n = ly 2, • • • ). Suppose now that there is a sector with 
vertex at the origin free from the roots of Sn(z) = 0. Then if 
the polynomial segments Sn(z) converge in a region including 
the origin, it will follow that R is infinite, since otherwise 
the theorem is violated. Later Szegö [142] has given an 
extension of the theorem in which the sequence is no 
longer limited to a polynomial sequence obtained by seg­
menting a power series. 

Jentzsch [143] has obtained a theorem which derives the 
existence and genre of an entire function from suppositions 
regarding the roots of its segments without making the 
slightest demand regarding the convergence of the sequence 
Sn(z), 0 = 1, 2, • • • ). Denote by j8i,n, j82,n, • • • , Pntn the n 
roots of Sn(z). Then if from and after some fixed value of n 
these roots satisfy the inequality 

(27) E - r — r - <M, (n = r,r + 1, • • • ) , 
t=l I Pin \P 

where p is some positive integer and M a fixed positive num­
ber, the series will converge over the entire plane and its 
limit will be an entire function of genre equal to or less than p. 
As a particular application of this result consider any series 
whose segments Sn(z) have only real roots. By the theory 
of symmetric functions we have 

" 1 a!2 — 2a0a2 

»-i | Pin | 2 aQ
2 

Here p = 2, and M is any number greater than the right-hand 
member. It follows, therefore, if the polynomial sections 
Sn(z) of a formally given series have only real roots, the 
series converges to a limit, and the limit is an entire function 
of genre 2 at most. Pólya [120b] (1913) cuts down the genre 
to 1 at most, and to 0 when the roots are all of the same sign. 
Jentzsch states also, without giving proof, in his 1914 
Comptes Rendus note [144], that his conclusion will hold 
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also for any sequence of polynomials a n 0 + a n i 2 + • • • -\-annZn, 
(n = l, 2, • • • ), whose roots satisfy the inequality (27), 
provided that it converges uniformly in some region of the 
plane. In the same year Lindwart and Pólya [128] con­
sidered such a sequence under the same supposition but with 
the added limitation (presumably unnecessary) that the 
region of uniform convergence shall include the origin, and 
proved not only that it has a limit which is an entire function 
of genre equal to or less than p but that also the limit is 
actually a function of genre p — 1 at highest except for a 
possible factor eczP. 

I turn lastly to a topic as yet but too little worked, the 
determination of the conditions which must be imposed upon 
the coefficients of an entire function to secure a specified 
distribution of its roots. In the case of a real polynomial of 
the nth degree, it has been long known that if its roots are 
distinct, the number of pairs of imaginary roots is equal to the 
number of changes of sign in the sequence 

(28) $0, 
So Si 

Si S2 

y 

So Si S2 

Si S2 S3 

S2 S3 SA 

So Si • 

Si «?2 * 

$n—l Sn 

' Sn-1 

Sn 

' S2n-2 

where s0 = n, and Si denotes the sum of the ith power of the 
roots. The roots will be all real if and only if all of these de­
terminants are positive. If the members of (28) are all 
positive when we advance every subscript by unity, we have, 
as Grommer [121 ] has shown, the necessary and sufficient 
condition that the roots should all be distinct and positive, 
provided that there is no root at the origin. 

With this proviso, it is obviously permissible to replace 
the roots by their reciprocals, or, in other words, to substitute 
S-i for S{. This is necessary before we can think of generaliz­
ing the condition so as to get a corresponding result for 
entire functions. But the indefinitely continued sequence 
(28) is obviously unusable even for an entire function of 
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genre 0 with an infinite number of roots, for though the sum 
of the ith powers of the reciprocals of the roots will converge 
for all values of i, the element s0 = n increases indefinitely 
with the degree of the polynomial. Fortunately, in place 
of (28) we can use the sequence 

S_2 5-3 * * * S-n-1 

(29) s_2, 

to test the reality of the roots of a polynomial of nth degree. 
The roots are all real when and only when the terms of the 
sequence (29) are either all positive or are positive up to a 
certain member inclusive, after which they are all zero [121, 
p. 114]. The elements S-i therein contained have a signifi­
cance for entire functions of genre 0 or 1, the sum of the ith 
powers of the reciprocals of the roots being convergent for 
i^2. According to Grommer, Hurwitz considered the ques­
tion whether the roots must all be real when the terms of 
(29) continued indefinitely are all positive for such a function. 
But the elements S-i in (29) may be assigned a significance 
for any entire function. If, in fact, we take an entire function 
F(z) *=aQ+aiZ+ • • • without a zero at the origin and ex­
pand the negative of its logarithmic derivative into a series 

(30) 
F(z) 

= S_i + S-2 3 + s_3 z
2 + 

the successive coefficients are connected by linear recurrence 
formulas in which both the s_; and the ai appear linearly. 
When the function is of genre 0 the s~i are actually equal to 
the sum of the ith powers of the reciprocals of the roots 
by virtue of the relation 

F'(z) 

m - -£ i--£(! + - L + . . . ) . 
Whether or not this be the case, let the determinant sequence 
(29) continued indefinitely be formed with elements taken 
from the series (30). With this generalization of the s_t-
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Grommer took up the problem at Toeplitz's suggestion and 
proved that when the indefinitely continued sequence (29) 
is merely restricted by the requirement that all its terms 
shall be positive, the entire function will be of genre 0 or 1 
except possibly for a factor e~y z (7 real). His proof is 
complicated, involving the use of quadratic forms, con­
tinued fractions and Stieltjes integrals. Later, in 1920, 
Kritikos [122] under the instigation of Pólya re-derived the 
result by a simpler method. Grommer derives also a more 
general theorem, according to which the necessary and 
sufficient condition tha t a real entire function F(z), for which 
F(0) 7^0, shall have an infinite number of roots all real and 
simultaneously shall be an entire function of genre 2m — 1 or 
less, except for a factor e~y2z2m (7 real), is that all the deter­
minants 

•S—2m S - 2 m - l 

S—2m— k+1 S—2m—k 

S—2m—k+l 

S_2m— 2k+2 

, ( * - l , 2 , • • • ) , 

shall be positive. 
I t may not be without interest to say a word or two regard­

ing the opposite possibility that all the roots shall be imagi­
nary. Long ago I showed [2 ] very easily that if 

(31) flo, 
#0 al 

#1 #2 > 

a0 d\ #2 

#3 #4 

a0 a\ 

{ai = 0 for i > n), 

are all positive, all the roots of the polynomial 

Pn(z)=a0+aiz+ • • • +anzn 

are imaginary if n is even, or all but one if n is odd. The 
condition is sufficient but not necessary. It follows that if 
for an entire function a0+aiZ+a2Z2+ • • • all the terms of 
the sequence (31), indefinitely continued, are positive, it is 
an imaginary function with only imaginary zeros. A diver 
gent power series may also be consistent with the requirement 
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of the positive character of (31), as will be seen by increasing 
a0, #2, ^4, sufficiently rapidly. 

This I trust is sufficient to indicate the kind of theorems 
which are being obtained by extension of the theory of 
equations into the province of the theory of analytic 
functions. The mine has been yet imperfectly worked 
and much ore remains to be extracted. 
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A general report on the theory of entire functions was made in 1909 by 
Vivanti in the following article. 

1. G. Vivanti, Ueber den gegenwàrtigen Stand der Theorie der ganzen 
transzendenten Funktionen, Archivder Mathematik und Physik, (3), vol. 15, 
pp. 318-335 to which a Literaturverzeichniss with 214 entries was appended. 
The aspect of root location is included. 

The literature on the location of roots of polynomials prior to 1900 is 
sufficiently covered in Epstein and Timerding's revision of Pascal's Re­
pertorium der Hoheren Analysis, vol. I on Analysis, Chapter 4, §§15, 16. 

PART I. ON THE ROOTS OF POLYNOMIALS 

A. O N THE NUMBER OF R E A L OR IMAGINARY ROOTS; 

NUMBER IN AN INTERVAL. 

2. E. B. Van Vleck, A sufficient condition f or the maximum number of 
imaginary roots o f an equation of the nth degree, Annals of Mathematics, (2), 
vol. 4 (1903), pp. 191-192. 

3. O. D. Kellogg, A necessary condition that all the roots of an algebraic 
equation be real, Annals of Mathematics, (2), vol. 9 (1907-8), pp. 97-98. 

4. O. Dunkel, Sufficient conditions for imaginary roots of algebraic equa­
tions, Annals of Mathematics, (2), vol. 10 (1908-9), pp. 46-54. 

Numbers 2-4 may be grouped together. 
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5. P. Zervos, Sur les racines des équations algébriques, L'Enseignement 
Mathématique, vol. 6 (1904), pp. 297-299. 

6. O. Nicoletti, Su alcune applicazioni del teorema di Sturm, Atti, 
Accademia di Torino, vol. 39 (1904), pp. 455-482. 

7. G. Usai, Sopra una determinazione de funzioni di Sturm dovuta al 
Mollame, Giornale di Matematiche, vol. 61 (1923), pp. 77-91. 

8. G. Mignosi, Teorema di Sturm e sue estensioni, Rendiconti di Palermo, 
vol. 49 (1925), pp. 1-164. With bibliography. 

9. M. Cipolla, Il discriminante e il numero délie radici imaginarie di 
un'equazione algebrica a coefficienti reali, Atti , Accademia in Catania, (5), 
vol. 10 (1917), No. 13, pp. 1-23. 

10. C. Schmidt, Ueber die obère Grenze fur die Anzahl der positiven und 
negativen Wurzeln einer algebraischen Gleichung, Archiv der Mathematik 
und Physik, vol. 15 (1909), pp. 161-164. 

11. M. Fekete and G. Pólya, Ueber ein Problem von Laguerre, Rendi­
conti di Palermo, vol. 34 (1912), pp. 89-120. 

12. A. Hurwitz, Ueber den Satz von Budan-Fourier, Mathematische 
Annalen, vol. 71 (1912), pp. 584-591. 

13. F . Giudiche, Un1osservazione sul teorema di Budan-Fourier, Giornale 
di Matematiche, vol. 50 (1912), pp. 188-190. 

14. D. R. Curtiss, (a) Extensions of Descartes' rules of signs connected 
with a problem suggested by Laguerre, Transactions of this Society, vol. 16 
(1915), pp. 350-360. 

(b) Recent extensions of Descartes' rule of signs, Annals of Mathematics, 
(2), vol. 19 (1917-18), pp. 251-278. 

(c) An extension of Descartes' rule of signs, Mathematische Annalen, 
vol. 73 (1913), pp. 424-435. 

15. G. Pólya, Ueber einige Verallgemeinerungen der Descartesschen Zeich-
enregel, Archiv der Mathematik und Physik, (3), vol. 23 (1915), pp. 22-32. 

(Gives a new proof of Laguerre's, Runge's and Sylvester's rules of signs.) 

16. N. Obrechkoff, Ueber die Trennung der reellen Wurzeln von alge-
braischen Gleichungen, Jahresbericht der Vereinigung, vol. 37 (1928), pp. 
234-237. 

17. J. v . Sz. Nagy, (a) Ueber algebraische Gleichungen mit lauter reellen 
Wurzeln, Jahresbericht der Vereinigung, vol. 27 (1918), pp. 37-43. 

(b) Ueber geometrische Relationen zwischen den Wurzeln einer algebraischen 
Gleichung und ihrer Derivierten, Jahresbericht der Vereinigung, vol. 27 
(1918), pp. 44-48. 

(c) Zur Theorie der algebraischen Gleichungen, Jahresbericht der Ver­
einigung, vol. 31 (1922), pp. 238-251. 

18. A. Pellet, Sur les équations ayant toutes leurs racines réelles, Comptes 
Rendus, vol. 147 (1908), pp. 342-343. 

See also No. 88a. 
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B . U P P E R AND L O W E R BOUNDS TO THE ABSOLUTE VALUES OF ROOTS. 

19. L. Koenigsberger, Ueber die Abgranzung der Lösungen einer algebra-
ischen Gleichung, Rendiconti di Palermo, vol. 26 (1908), pp. 343-359. 

20. S. Kakeya, On the limits of the roots of an algebraic equation with 
positive coefficients, Tôhoku Mathematical Journal, vol. 2 (1912-13), pp. 
140-142. 

(A proof tha t the absolute values of the roots of the polynomial 
anx

nJtan~ixn~lJr • • • + a 0 —0 lie between the greatest and least values of 
the quotients an~\/an, an_2 /an-i , • • • , a2/ai, a0/ai.) 
With this article may be connected the following five numbers: 

21. T . Hayashi, (a) On a theorem of Mr. Kakeya's, Tôhoku Mathemati­
cal Journal, vol. 2 (1912-13), p. 215. 

(b) On the roots of an algebraic equation, Tôhoku Mathematical Journal, 
vo l .3 (1913), pp. 110-115. 

22. R. Kurokawa, A theorem in algebra, Tôhoku Mathematical Journal, 
vol. 3 (1913), pp. 173-174. 

23. A. Hurwitz, Ueber einen Satz des Herrn Kakeya, Tôhoku Mathe­
matical Journal, vol. 4 (1913-14), pp. 89-93. 

24. E. Landau, AbscMtzung der Koeffizientensumme einer Potenzreihe, 
Archiv der Mathematik und Physik, (3), vol. 21 (1913), see §4 of p. 253. 

25. G. Eneström, Remarque sur un théorème relatif aux racines de Véqua­
tion anx

nJr - ' • -fao = 0 où tous les coefficientes sont réelles et positifs, Tôhoku 
Mathematical Journal, vol. 18 (1920), pp. 34-36. 

(Translation of a Swedish article of 1893 in which Kakeya's Theorem 
was obtained.) 

The following six numbers form a group : 

26. R. D. Carmichael and T . E. Mason, Note on the roots of algebraic 
equations, this Bulletin, vol. 21 (1914), pp. 14-22. 

27. G. D. Birkhoff, An elementary double inequality for the roots of an 
algebraic equation having greatest absolute value, this Bulletin, vol. 21 (1914), 
pp. 494-5. 

28. K. P. Williams, Note concerning the roots of an equation, this Bulletin, 
vol. 28 (1922), pp. 394-6. 

29. M. Kuniyeda, Note on the roots of algebraic equations, Tôhoku 
Mathematical Journal, vol. 9 (1916), pp. 167-173. 

30. M. Fujiwara, (a) Ueber die Wurzeln der algebraischen Gleichungen, 
Tôhoku Mathematical Journal, vol. 8 (1915), pp. 78-85,—see part 2. 

(b) Ueber die obère Schranke des absoluten Betrages der Wurzeln einer 
algebraischen Gleichung, Tôhoku Mathematical Journal, vol. 10 (1916), pp. 
167-171. 

31 . R. D. Carmichael, Elementary inequalities f or the roots of an algebraic 
equation, this Bulletin, vol. 24 (1917-18), pp. 286-296. 

32. T . Kojima, (a) On a theorem of Hadamard's and its application, 
Tôhoku Mathematical Journal, vol. 5 (1914), see p. 58. 
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(b) On the limits of the roots of an algebraic equation, Tôhoku Mathemati­
cal Journal, vol. 11 (1917), pp. 119-127. 

33. M. Petrovitch, Théorème sur le nombre de racines d'une équation 
algébrique comprises à Vintérieur d'une circonférence donnée, Comptes 
Rendus, vol. 129 (1899), pp. 583 and 873. 

34. S. B. Kelleher, Des limites des zéros dun polynôme, Journal de 
Mathématiques, (7), vol. 2 (1916), pp. 169-171. 

35. S. Kakeya, On algebraic equations having the roots of limited magnitude, 
Proceedings of the Physico-MathematicalSociety of Japan, (3), vol. 3 (1921). 

36. J. L. Walsh, An inequality for the roots of an algebraic equation, 
Annals of Mathematics, (2), vol. 25 (1924), pp. 285-6. 

C. REGIONAL LOCATIONS FOR THE ROOTS. 

The following four numbers relate to circular regions: 

37. M. Petrovitch, (a) Sur une suite de fonctions rationnelles rattachées 
aux équations algébriques, Bulletin de la Société Mathématique, vol. 36 
(1908), pp. 141-150. 

(b) Comptes Rendus, vol. 129 (1899), pp. 583 and 873. 
(Considers number of roots under a given modulus.) 

38. J. Schur, Journal für Mathematik, vol. 148 (1918); see §13, pp. 
134-136, Ueber Polynôme, die nur im Innerm des Einheitskreis verschwinden. 

(This gives a criterion tha t all the roots of a polynomial shall lie within 
the unit circle.) 

39. A. Cohn, Ueber die Anzahl der Wurzeln einer algebraischen Gleichung 
in einem Kreise, Mathematische Zeitschrift, vol. 14 (1922), pp. 110-148. 

40. G. Herglotz, Ueber die Wurzelanzahl algebraischer Gleichungen in-
nerhalb und auf dem Einheitskreis, Mathematische Zeitschrift, vol. 19 
(1924), pp. 26-34. 

Nos. 41-47 relate to the equation of Hurwitz. 

41 . A. Hurwitz, Ueber die Bedingungen, unter welchen eine Gleichung 
nur Wurzeln mit negativen reellen Theilen besitzt, Mathematische Annalen, 
vol. 46 (1895), pp. 273-284. 

42. E. Bompiani, Sulle condizioni sotto le quali un'equazione a coefficientt 
reali ammette solo radici con parte reale negativa, Giornale di Matematiche, 
vol. 49, (1911), pp. 33-39. 

43. G. Andreoli, Sui limiti superiori dei moduli delle radici complesse di 
una data equazione algebrica, Napoli Rendiconti (3), vol. 19, (1913), pp. 
97-105. 

44. Liénard and Chipart, Sur le signe de la partie réelle des racines dune 
équation algébrique, Journal de Mathématiques, (6), vol. 10 (1914), pp. 
291-346. Comptes Rendus, vol. 157 (1913), pp. 691-694 and 837-840. 

45. L. Orlando, (a) Sui problema di Hurwitz relativo aile parti reali delle 
radici di un'equazione algebrica, Mathematische Annalen, vol. 71 (1912), 
pp. 233-245. 
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(b) Sopra alcuni polinomii definiti, considerati da Hurwitz, Atti, Ac-
cademia dei Lincei, Rendiconti, Classe di scienze fisiche, matematiche e 
naturali, (5), vol. 22i (1913), pp. 213-215. 

(c) The same, vol. 19i (1910), pp. 801-805, vol. 192 (1910), pp. 317-321 
and 430-435, and vol. 20i (1911), pp. 742-745. 

46. I. Schur, Ueber algebraische Gleichungen, die nur Wurzeln mit nega-
tiven Realteilen hesitzen, Zeitschrift für angewandte Mathematik und 
Mechanik, vol. 1 (1921), pp. 307-311. 

47. M. Fujiwara, Ueber die algebraischen Gleichungen, deren Wurzeln in 
einem Kreise oder in einer Halbebene liegen, Mathematische Zeitschrift, vol. 
24 (1926), pp. 160-169. 

48. See part 1 of number 30(a) above. 

49. A. J. Kempner, Ueber die Separation komplexer Wurzeln algebraischer 
Gleichungen, Mathematische Annalen, vol. 85 (1922), pp. 49-59. 

(His separation of roots is based on the arguments of the coefficients of 
the equation.) 

50. M. Tajima, On the roots of an algebraic equation, Tôhoku Mathe­
matical Journal, vol. 19 (1921), pp. 173-4. 

51. J. L. Walsh, On Pellet's theorem concerning the roots of a polynomial, 
Annals of Mathematics, (2), vol. 26 (1924-25), p. 59-64. 

D. RESTRICTION ON ROOT LOCATION WHEN ONLY CERTAIN 

COEFFICIENTS OF THE POLYNOMIAL ARE G I V E N . 

52. E. Landau, (a) Ueber den Picardschen Satz, Vierteljahrsschrift der 
naturforschenden Gesellschaft in Zurich, vol. 51 (1906), pp. 252-318. 

(b) Sur quelques generalisations du théorème de M. Picard, Annales de 
L'École Normale Supérieure, (3), vol. 24 (1907), pp. 179-201. 

(Landau's articles initiated this line of work.) 

53. R. E. Allardice, On a limit of the roots of an equation that is inde­
pendent of all but two of the coefficients, this Bulletin, vol. 13 (1906-7), pp. 
443-447. 

54. P. Bohl, Zur Theorie der trinomischen Gleichungen, Mathematische 
Annalen, vol. 65 (1908), pp. 556-566. 

55. G. Herglotz, Ueber die Wurzeln trinomischer Gleichungen, Leipziger 
Berichte, Math.-Phys. Classe, vol. 74 (1922), pp. 1-8. 

56. P . Sergesco, Sur le module minimum des zéros de Véquation trinôme, 
Comptes Rendus, vol. 181 (1925), pp. 762-763. 

57. L. Fejér, (a) Ueber die Wurzel vom kleinsten absoluten Betrage einer 
algebraischen Gleichung, Mathematische Annalen, vol. 65 (1908), pp. 413-
423. Comptes Rendus, vol. 145 (1907), pp. 459-461. 

(b) Ueber Kreisgebiete, in denen eine Wurzel einer algebraischen Gleichung 
liegt, Jahresbericht der Vereinigung, vol. 26 (1917), pp. 114-128. 

58. P. Montel, Sur les modules des zéros des polynômes, Annales de 
l'École Normale Supérieure, (3), vol. 40 (1923), pp. 1-34. 

Comptes Rendus, vol. 174 (1922), pp. 850-852, 1220-1222. 
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59. J. L. Walsh, Sur un théorème d'algèbre, Comptes Rendus, vol. 176 
(1923), pp. 1361-3. 

60. E. B. Van Vleck, On limits to the absolute values of the roots of a 
polynomial, Bulletin de la Société Mathématique, vol. 53 (1925), pp. 105-
125. 

61. M. Biernacki, (a) Sur un nouveau théorème d'algèbre, Comptes 
Rendus, vol. 177 (1923), pp. 1193-1194. 

(b) Sur les équations algébriques contenant des paramètres arbitraires, 
Thèse (1927), pp. 1-145, Extrait du Bulletin de VAcadémie Polonaise des 
Sciences et des Lettres. 

See also No. 51. 

E. ROOTS OF THE DERIVATIVE. 

E I . T H E GAUSS-LUCAS THEOREM AND THE METHOD OF REPULSIVE 

PARTICLES. 

62. Gauss, Note appended at end of memoir (1816), Collected Works, 3, 
p. 112; see also Osgood, Lehrbuch der Funktionentheorie, 2d ed. (1912), 
pp. 210-211. 

63. F . Lucas, (a) Numerous articles in the Comptes Rendus, vols. 67, 
75, 78, 89, 106. So far as I know, the Gauss-Lucas theorem is first 
enunciated in restricted form on p. 274 of vol. 78 (1874); completely in 
vol. 89 (1879), pp. 224-266. 

(b) Géométrie des polynômes, Journal de l'École Polytechnique, cahier 
46 (1879), pp. 1-33. 

(This includes much of his previous works. Lucas considered repeatedly 
the curves obtained by equating to a constant the modulus or the argument 
of a polynomial. The curves were treated by Darboux and recently without 
references to Lucas by de la Vallée-Poussin in the following paper.) 

64. Ch. J. de la Vallée Poussin, Sur les relations qui existent entre les 
racines d'une équation algébrique et celles de sa dérivée, Mathesis, vol. 22 
(1902), supplement, pp. 1-20. 

(Lucas theorem is reproved in Nos. 65-67, 137.) 

65. Berlothy, Sur les équations algébriques, Comptes Rendus, vol. 99 
(1884), pp. 745-747. 

(Apparently in ignorance of the same proof by Lucas.) 

66. F . Irwin, Relation between the roots of a rational integral f unction and 
its derivative, Annals of Mathematics, (2), vol. 16 (1914-5), p. 138. 

67. T. Hayashi, Relation between the zeros of a rational integral function 
and its derivative, Annals of Mathematics, (2), vol. 15 (1913-4), pp. 112-113. 

68. M. Bôcher, A problem in statics and its relation to certain algebraic 
invariants, Proceedings of the American Academy of Arts and Sciences, 
vol. 40 (1904), pp. 469-484. 

(Bôcher's application of Gauss' method to the Jacobian of two binary 
forms is continued in the following memoirs of Walsh.) 
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69. J. L. Walsh, On the location of the roots of the Jacobian of two binary 
forms, and of the derivative of a rational function, Transactions of this Society, 
vol. 19 (1918), pp. 291-298; also vol. 22 (1921), pp. 101-116, and vol. 24 
(1926), pp. 31-69. See further pp. 87-88 of vol. 23. 

70. D. R. Curtiss, A mechanical analogy in the theory of equations, Vice-
presidential address, Section A, American Association for the Advancement 
of Science, Toronto, 1921, Science, vol. 55 (1922), pp. 189-194. 

(This address gives a general review of the applications of Gauss' 
method of repulsive particles.) 

71. J. L. Walsh, (a) On the location of the roots of the derivative of a 
polynomial, Comptes Rendus du Congrès International des Mathéma­
ticiens, Strasbourg, 1920, pp. 339-342. 

(b) On the location of the roots of the derivative of a polynomial, Proceed­
ings of the National Academy, vol. 18 (1922), pp. 139-141. 

(c) Sur la position des racines des dérivées d'un polynôme, Comptes 
Rendus, vol. 172 (1921), pp. 662-664. 

E2. T H E THEOREM OF JENSEN, WITH ADDITIONS BY WALSH. 

72. J. L. W. V. Jensen, Recherches sur la théorie dés équations, Acta 
Mathematica, vol. 36 (1913), pp. 181-195. 

(A statement of the theorem is given without proof on p. 190.) 

73. J. L. Walsh, On the location of the roots of the derivative of a poly­
nomial, Annals of Mathematics, (2), vol. 22 (1920-21), pp. 128-144. 

74. W. H. Echols, Note on the roots of the derivative of a polynomial, 
American Mathematical Monthly, vol. 27 (1920-21), pp. 299-230. 

74a. J. v . Sz. Nagy, Zur Theorie der algebraischen Gleichungen, Jahresbe-
richt der Vereinigung, vol. 31 (1922), pp. 238-251. 

E3. T H E THEOREM OF GRACE. NOS. 75-79. 

75. J. H . Grace, The zeros of a polynomial, Proceedings of the Cam­
bridge Philosophical Society, vol. 11 (1902), pp. 352-357. 

76. P. J. Heawood, Geometrical relations between the roots off(x)=0, 
f'(x)=0, Quarterly Journal of Mathematics, vol. 38 (1907), pp. 84-107. 

77. G. Szegö, Bemerkungen zu einem Satz von J. H. Grace iiber die 
Wurzeln algebraischer Gleichungen, Mathematische Zeitschrift, vol. 13 
(1922), pp. 28-55. 

78. J. L. Walsh, On the location of the roots of certain types of polynomials, 
Transactions of this Society, vol. 24 (1922), pp. 163-180. 

78a. D. R. Curtiss, A note on the preceding paper, Transactions of th is 
Society, vol. 24 (1922), pp. 181-184. 

79. J. Egervâry, On a maximum-minimum problem and its connection 
with the roots of equations, Szeged Acta, vol. 1 (1922), pp. 38-45. 

See also No. 39. 
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E4. ROOTS OF A POLYNOMIAL AND ITS DERIVATIVES. LINEAR COMBINATIONS 

80. S. Kakeya, On zeros of a polynomial and its derivatives, Tôhoku 
Mathematical Journal, vol. 11 (1917), pp. 5-16. 

81. H . B. Mitchell, On the imaginary roots of a polynomial and the real 
roots of its derivative, Transactions of this Society, vol. 19 (1918), pp. 43-52. 

82. G. Pólya, Ueber die Nullstellen sukzessiver Derivierten, Mathe­
matische Zeitschrift, vol. 12 (1922), pp. 36-60. 

83. A. Hurwitz, Ueber definite Polynôme, Mathematische Annalen, vol. 
73 (1913), pp. 173-176. 

84. M. Fujiwara, Einige Bemerkungen iiber die elementare Theorie der 
algebraischen Gleichungen, Tôhoku Mathematical Journal, vol. 9 (1916), 
pp. 102-108. 

85. T. Hayashi, On some algebraic equations having real roots only, 
Tôhoku Mathematical Journal, vol. 14 (1918), pp. 334-339. 

86. Y. Uchida, (a) On the relation between the roots of f(z)—0 and 
ƒ'(*) = 0 , Tôhoku Mathematical Journal, vol. 10 (1916), pp. 139-141. 

(b) On the roots of the algebraic equation of the form / + & i / ' + * • * 
+£„ƒ(»)=(), Tôhoku Mathematical Journal, vol. 14 (1918), pp. 325-327. 

87. K. Oishi, On the roots of an algebraic equation f-\-k\f'-\-kif"-{• • • • 
+£„ƒ<»> = 0 , Tôhoku Mathematical Journal, vol. 20 (1922), pp. 1-17. 

See also Nos. 72, 93. 

F . ROOTS OF CONNECTED POLYNOMIALS. 

Nos. 88-92 form a group. 
88. E. Malo, Note sur les équations algébriques dont toutes les racines 

sont réelles, Journal de Mathématiques Spéciales, (4), vol. 4 (1895), pp. 7 etc. 

88 a. N. Obrechkoff, Sur un problème de Laguerre, Comptes Rendus, 
vol. 177 (1923), pp. 102-103. (Gives an extension of Malo's theorem.) 

89. G. Szegö, see No. 77. 
90. J. Schur, Zwei Sâtze iiber algebraische Gleichungen mit lauter reellen 

Wurzeln, Journal für Mathematik, vol. 144 (1914), pp. 75-88. 
91. M. Petrovitch, Equations algébriques et transcendantes dépourvues de 

racines réelles, Bulletin de la Société Mathématique, vol. 41 (1913), pp. 
194-206. 

92. Pólya and Schur, Ueber zwei Arten von Faktorenfolgen in der Theorie 
der algebraischen Gleichungen, Journal für Mathematik, vol. 144 (1914), 
pp. 89-113. 

93. M. Fujiwara, Ueber definite polynôme, Tôhoku Mathematical 
Journal, vol. 6 (1914), pp. 20-26. 

94. S. Kakeya, On some positive forms, Tôhoku Mathematical Journal, 
vol. 6 (1914-15), pp. 27-31. 

95. J. L. Walsh, Note on the location of the roots of a polynomial, Mathe­
matische Zeitschrift, vol. 24 (1926), pp. 733-742. 

Nos. 96-98 relate to the theorem of Biehler (Journal für Mathematik, 
vol. 87, p . 350. 

file://-/-k/f'
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96. A. Auric, Generalisation d'un théorème de Laguerre, Comptes Rendus, 
vol. 137 (1903), pp. 967-969. 

97. M. Fujiwara, see No. 84, p. 105. 

98. Y. Okada, On some algebraic equations whose roots are real and dis­
tinct, Tôhoku Mathematical Journal, vol. 14 (1918), pp. 328-333. 

99. B. Gonggryp, Quelques théorèmes concernant la relation entre les 
zéros d'un polynôme et ceux d'un polynôme de degré inférieur, Journal de 
Mathématiques, (7), vol. 1 (1915), pp. 353-365. 

100. O. Szâsz, Ueber Hermitesche Formen mit rekurrierender Déterminante 
und uber rationale Pdymorne, Mathematische Zeitschrift, vol. 11 (1921), 
pp. 23-57. 

101. C. F . Gummer, The relative distribution of the real roots of a system 
of polynomials, Transactions of this Society, vol. 23 (1922), pp. 265-282. 

102. J. v. Sz. Nagy, Ueber die Lage der Wurzeln von linearen Verknüpfun-
gen algebraischer Gleichungen, Szeged Acta, vol. 1 (1923), pp. 127-138. 

103. M. Fekete, Beweis eines Satzes von Jentzsch, Jahresbericht der 
Vereinigung, vol. 31 (1922), Nachtrag, pp. 42-48. 

G. MISCELLANEOUS. 

G I . ANALOGS TO THE THEOREM OF ROLLE, ETC. 

104. M. Fekete, (a) Ueber Zwischenwerte bei komplexen Polynomen, 
Szeged Acta, vol. 1 (1923), pp. 98-100. 

(b) Analoga zu den Sdtzen von Rolle und Bolzano fur komplexe Polynôme 
und Potenzreihen mit Lùcken, Jahresbericht der Vereinigung, vol. 32 (1924), 
pp. 299-306; also 36 (1927), pp. 216-222. 

(c) Ueber Gebiete, in denen komplexe Polynôme f eden Wert zwischen zwei 
gegebenen annehmen, Mathematische Zeitschrift, vol. 22 (1925), pp. 1-7. 

(d) Ueber die Nullstellenverteilung bei Polynomen, deren Wert an zwei 
Stellen gegeben ist, Jahresbericht der Vereinigung, vol. 34 (1926), pp, 220-233. 

105. E. Bâlint, Bemerkung zur der Note des Herrn Fekete, Jahresbericht 
der Vereinigung, vol. 34 (1925), pp. 233-237. 

106. J. v. Sz. Nagy, Ueber einen Satz von M. Fekete, Jahresbericht der 
Vereinigung, vol. 32 (1924), pp. 307-309. 

G2. ROOTS OF THE CHARACTERISTIC EQUATION. NOS. 107-110. 

107. G. Pick, Ueber die Wurzeln der charakteristischen Gleichungen von 
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1929.] ROOTS OF ENTIRE FUNCTIONS 681 

G3. CERTAIN MINIMUM-POLYNOMIALS. NOS. 111-113. 

111. L. Fejér, (a) Ueber die Lage der Nullstellen von Polynomen, die 
aus Minimumforderungen gewisser Art entspringen, Mathematische An­
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116. S. Kakeya, On the zero points of a power series with positive coef­
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lauter positive Nullstellen besitzen, Arkiv för Matematik, Astronomi, och 
Fysik, vol. 18 (1924), No. 22, pp. 1-5. 

126. E. Maillet, Sur les fonctions entières et quasi entières, Journal de 
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Comptes Rendus, vol. 99 (1884), pp. 26-27. 
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Taylor 's power series is a limit point of roots of its segments. In No. 140 
Lukacs showed tha t there was at least one such limit point on the circle. 
An extension of Jentzsch's result is given by Szegö in the following article.) 
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