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T H E APPROXIMATION OF HARMONIC FUNCTIONS 
BY HARMONIC POLYNOMIALS AND BY 

HARMONIC RATIONAL FUNCTIONS* 

BY J. L. WALSH 

1. Introduction. The following theorem of Weierstrass is 
classical. 

Let the function f'(d) be continuous for all values of the argu­
ment and periodic with period 2ir. Then if an arbitrary positive 
e be given, there exists a trigonometric polynomial which differs 

from f (6) at most by e; that is, the inequality 

(1) f(fl) - X )0* cos kO + bk sin kd) 
fc=0 

holds for all values of 9. 
An equivalent statement of the conclusion of this theorem 

is that f (6) can be expanded in a series of the form 

«5 n 

2 lL(anJc cos kO + bnk sin kff), 

which converges uniformly f or all values of 6. This is of course 
a general fact, tha t if a given function can be uniformly 
approximated as closely as desired by a linear combination of 
other functions, then that function can be expanded in a 
uniformly convergent series of which each term is a linear 
combination of those other functions, and conversely. This 
fact is easy to prove and will be frequently used in the sequel. 

If in the (x, ;y)-plane we introduce polar coordinates (r, 6) 
and consider the function ƒ(#) defined on the unit circle C, 
Weierstrass's theorem refers to the approximation of a func­
tion f(0) continuous on C by trigonometric polynomials, or 
what is the same thing, by polynomials of the form 

* An address delivered by invitation of the program committee at 
the meeting of the Society in New York, February 23,1929. 
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(2) J^rk(ak cos kd + bk sin kd). 

A polynomial of the form (2) is of course harmonic, for 
the expressions rk cos kd and rk sin kd are respectively the real 
parts of the analytic functions zk, — izk, and can be written 
as harmonic polynomials in x and y. 

If we interpret Weierstrass's theorem as yielding a uniform 
expansion rather than uniform approximation of j'(0), we 
have a sequence {pn(r, d)} of functions each of type (2) 
which converges uniformly to the function ƒ(#) on C and 
likewise converges uniformly in the closed interior of C. For 
a necessary and sufficient condition for uniform convergence 
on C is that if an arbitrary e be given, there exist M so that 

I Pm(r,6) - pn(r,6) | ^ €, m,n > M, 

holds on C. But this inequality holding for r — \ holds also 
for r ^ l , since the functions pn(r, 6) are harmonic for r^l 
and a harmonic function has its maximum and minimum 
values on the boundary of the region considered. The limit 
f(r, 6) of this sequence {pn(r, Q) } is thus harmonic* interior 
to C, continuous in the corresponding closed region, and on C 
coincides with the given continuous function f(0). That is, 
by Weierstrass's theorem we have established the existence 
of the function ƒ(r, 0), the solution of the Dirichlet problem 
for the region interior to C and for arbitrary continuous boun­
dary values f (6) ; the solution of the Dirichlet problem is 
known to be unique. 

The problem of the uniform approximation to f'(d) on C 
by harmonic polynomials is precisely equivalent to the prob­
lem of the uniform approximation to f(r, 6) in the closed 
interior of C, for a function harmonic in a region has, no 
maximum or minimum interior to that region. Inequality 
(1) is equivalent to the inequality 

* A function u(x, y) is harmonic in a region if it is continuous there, 
together with i ts first and second partial derivatives, and if (d2u/d%2) + 
(d2u/dy2) = 0 . A function is harmonic at a point if it is harmonic throughout 
a neighborhood of that point. 
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ƒ0,0) - J2rk(ak cos k6 + bk sin kd) < 1 

each of these inequalities implies the other. 
The discussion just given suggests the general problem of 

studying the approximation to a given continuous function 
on an arbitrary point set C by means of harmonic poly­
nomials or more generally by harmonic rational functions, 
particularly in the more interesting cases that the given 
function is harmonic in the interior points of C, or that C is 
itself the boundary of a region. The present paper is devoted 
to results on this general problem, chiefly a report so far as 
concerns approximation by polynomials, but a detailed ex­
position of results on approximation by more general rational 
functions, for these results are in the main new. As in the 
special case already considered to some extent, namely the 
theory of approximation to functions of a single real variable 
by trigonometric polynomials, there are particularly three 
special problems to be taken up here: first, the general 
problem of the possibility of approximation, corresponding 
to Weierstrass's theorem as already mentioned; second, the 
problem of approximation by special types of polynomials 
corresponding for example to expansion in Fourier's series; 
and third, the study of the degree of approximation, the study 
of the relation between the continuity properties of the 
functions approximated and the least maximum error for 
approximation by a polynomial of degree n. We shall 
examine these problems in some detail in the order given, 
first the problems for approximation by polynomials and 
later the corresponding problems for approximation by more 
general rational functions. 

In the theory of functions of the complex variable 
z = x+iy, similar problems arise in connection with the 
approximating on a given point set of a given continuous or 
analytic function by means of polynomials in z or rational 
functions of z. This analogous theory frequently suggests 
results in the present theory of harmonic functions, and 
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may even furnish methods of proving those results; but the 
connection between the two theories is not always simple, 
and some situations in each theory have no analogs in the 
other. The two theories both have interesting applications 
to and connections with harmonic and analytic continuation, 
conformai mapping, the study of the Dirichlet problem, and 
topology. 

2, General Approximation by Harmonic Polynomials, The 
fundamental theorem in the approximation of analytic func­
tions by polynomials is due to Runge [ l ] * : 

Let f{z) be a function of 2, analytic in a simply-connected 
region\ C of the z-plane which does not contain the point at 
infinity in its interior. Then f{z) can be developed in C in a 
series of polynomials in z, which converges uniformly on any 
closed point set interior to C, 

We shall use Runge's theorem to prove the following ana­
log for harmonic functions.J 

Let u{x1 y) be a function of (x, y), harmonic in a simply-
connected region C of the (x, y)-plane which does not contain the 
point at infinity in its interior. Then u(x, y) can be developed 
in C in a series of harmonic polynomials in (x, 3/), which con­
verges uniformly on any closed point set interior to C. 

Let v(x, y) be a function conjugate to u(x, y) in C; the 
function v(x, y) is single-valued in C if one considers only an 
element of v(x, y) and its harmonic extensions along curves 
interior to C, Runge's theorem as applied to the function 
f(z)=u(x, y)+iv(x, y) yields a development of f{z) in poly­
nomials in z. The series whose terms are the real parts of the 
respective terms of that development represents the function 
u(x, y) and has the required properties with respect to con­
vergence. 

* The numbers in square brackets refer to the works of the authors 
indicated, in the bibliography at the close of this paper. 

t A region is a connected set of interior points. A region plus its bound­
ary points forms the corresponding closed region. 

% Compare Walsh [1, p . 198]. Bergmann [1] uses similar reasoning, but 
does not bring out clearly the uniformity of the convergence of the series of 
harmonic polynomials. 
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The essential content for our present purposes of the 
theorem just proved may also be stated as follows. 

If the f unction u{x, y) is harmonic in a closed Jordan region, 
then u(x, y) can be developed in that closed region in a uniformly 
convergent series of harmonic polynomials in (x, y). 

The present writer has proved, however, results much 
more general than this [ l ] , regarding the uniform develop­
ment of arbitrary harmonic functions. We state a number 
of these results, simply mentioning at this time the fact that 
the proof is based on Lebesgue's important work [ l ] on 
harmonic functions. We shall go into more detail regarding 
methods in §5, when we take up the more general problem 
of development in terms of harmonic rational functions. 

Let C be an arbitrary limited simply-connected region of the 
(x,y)-plane. A necessary and sufficient condition that an 
arbitrary function harmonic in C, continuous in the correspond­
ing closed region, be uniformly developable in the closed region 
by harmonic polynomials in (x, y), is that the boundary of C 
be also the boundary of an infinite region. 

Let C be an arbitrary limited closed point set. A necessary 
and sufficient condition that an arbitrary f unction continuous on 
C be uniformly developable on C by harmonic polynomials in 
(x, y), is that C be the boundary of an infinite region. 

An arbitrary limited closed point set C divides the plane in 
general into a number of regions; in particular one of these, 
D, is infinite. A continuous function u(x, y) defined on C is 
in particular defined on the boundary B of D, and on this 
boundary can, by the theorem just stated, be uniformly 
developed in harmonicpolynomials. This expansion of u(x, y) 
on B converges uniformly on B, hence uniformly on the entire 
point set E which is complementary (with respect to the 
entire plane) to D, and therefore defines a function U(x, y) 
on the entire set E. The set C is a subset of E. The functions 
u(x, y) and U(x, y) coincide on B. A necessary and sufficient 
condition that u(x, y) be uniformly developable on C in har­
monic polynomials is that u(x, y) and U(x, y) should coincide 
on C. 
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These theorems obviously include Weierstrass's theorem 
on the approximation to an arbitrary continuous function by 
trigonometric polynomials. These theorems include also 
Weierstrass's classical theorem that an arbitrary function 
continuous on a closed interval of the axis of reals can be 
uniformly approximated on that closed interval as closely as 
desired by a polynomial in the real variable. For if the point 
set C is chosen as such an interval, the only harmonic poly­
nomials 1, r cos d, r sin d, • • • , rn cos nd, rn sin nd, - - • not 
vanishing identically on C can be written on C in the form 
1, x, x2, • • - , so that on C a harmonic polynomial is a poly­
nomial in x. 

With these results, the most important questions regarding 
the expansion of arbitrary functions on limited point sets are 
answered. The corresponding questions for unlimited point 
sets have apparently not been treated previously. On some 
unlimited point sets C only the polynomial 1 of the set 
{rn cos nd, rn sin nd} is uniformly bounded, so the only func­
tions continuous on C which can be uniformly approximated 
on C by harmonic polynomials are constants. On certain other 
unlimited point sets C only a finite number of the harmonic 
polynomials {rn cos nd, rn sin nd] are continuous, and a 
necessary and sufficient condition that a function continuous 
on such a point set C be uniformly developable on C by har­
monic polynomials is that the function should be a linear 
combination of those particular harmonic polynomials. On 
other unlimited point sets C an infinity of the harmonic 
polynomials {rn cos nd, rn sin nd} are continuous, so necessary 
and sufficient conditions for the expansion of arbitrary 
functions on such point sets C are not obvious, nor can they 
be obtained without modification of the methods hitherto 
employed. 

It is illuminating to contrast the present problem with the 
problem of approximating given analytic or continuous func­
tions by means of polynomials in the complex variable. I t is 
not yet known what is the most general region C such that an 
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arbitrary function analytic interior to C and continuous in 
the corresponding closed region can be approximated uni­
formly in the closed region as closely as desired by poly-
mials in the complex variable. I t can be shown by an 
example [Walsh, 1, p. 203] however, that this most general 
region C is not the most general region such that an arbitrary 
function harmonic interior to C and continuous in the cor­
responding closed region can be approximated uniformly in 
the closed region as closely as desired by harmonic poly­
nomials. Unlimited point sets C are easy to treat for approxi­
mation by polynomials in the complex variable. Every such 
polynomial not a constant becomes infinité on C, so the only 
continuous functions which can be uniformly approximated 
on C are constants, and every such function can be so ap­
proximated. 

3. Harmonic Polynomials Belonging to a Region. I t is 
natural to inquire whether more precise results than those 
just considered are obtainable regarding expansions in a given 
region in terms of a particular set of harmonic polynomials 
belonging to that region. For instance, if the region is chosen 
as the interior of the unit circle C, then an arbitrary function 
f(x} y) harmonic in the closed interior of C can be expanded 
on the circumference in a series of Fourier : 

(3) f(x,y) = h 2^(ak cos kO + bk sin kff), 
2 A ; = l 

1 C2x 1 C2ir 

ak — — I ƒ cos kddO, bk — — I ƒ sin kddd, 
7T */ 0 7T •/ 0 

where the integrals are computed over C. The series con­
verges uniformly on C. The series 

(4) h 22rh(ak cos k6 + bk sin kO) 
2 /b=i 

is a series of harmonic polynomials which converges uni-
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formly on C and hence converges uniformly throughout the 
closed interior of C The sum of the series (4) coincides with 
fix, y) on C and hence throughout the interior of C as well. 

If we start not with the unit circle but a more general Jor­
dan curve C as the boundary of our region, can there be found 
harmonic polynomials {pk(x, y)} such that an arbitrary 
function harmonic on and within C can be expanded in a 
series 

00 

(5) ^akpk(x,y) 
k=Q 

which converges uniformly in the closed interior of C? The 
answer here is affirmative, if the curve C is analytic. In 
fact, Faber [ l ] , Fejér [ l ] , Szegö [ l ] , Carleman [ l ] , Berg-
mann [ l ] , Bochner [ l ] , and others have studied polynomials 
{sk(z)} in the complex variable z belonging to such a region 
and have shown that an arbitrary function f(z) analytic in 
the closed region can be expanded in a series 

00 

^CkSk(z) 
k=*Q 

which converges uniformly in the closed region. A suitable 
set of harmonic polynomials of the kind we desire can be 
found by separating sk(z) into its real and pure imaginary 
parts. Thus, let the function u(x, y) be given harmonic in 
the closed interior of C; there exists a function v(x, y) con­
jugate to it, likewise harmonic in this closed region. Then by 
the properties of the polynomials sk(z), there exists an 
expansion 

oo 

u(x,y) + iv(x,y) = X ) W + ici'){si{x,y) + isk
u(x,y)), 

where ck = ci +id', sk(z) = si (x, y) +sk" (x, y). From this we 
derive the series 

00 

(6) u(x,y) = ^[c£sk(%,y) - c£'s£'(x,y)], 
A=0 
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so we have an expansion of type (5)* by setting 

p2k(x,y) = si(x,y), p2k+i(%,y) = s£'(x,y). 

In particular if the derivatives of the polynomials Sk(z) 
are orthogonal with respect to the area interior to C, the 
formulas for the coefficients in (6) are remarkably simple in 
form, as Bergmann has shown [ l ] . 

There are, however, various other ways of determining 
sets of harmonic polynomials belonging to a given region. 
Let us consider the plane of the auxiliary variables (xf, yf), 
and map conformally the interior of C onto the interior of 
the unit circle Y of the (x', y')-plane. A function harmonic 
in the closed interior of C corresponds to a function harmonic 
in the closed interior of T, and can be uniformly expanded in 
the closed interior of V in a series (4) of harmonic polynomials 
in (x', yr). The harmonic polynomials rn cos nd, rn sin n6 
in the (x', y) -p lane correspond in the (x, ;y)-plane to func­
tions harmonic in the closed interior of C; moreover these 
functions in the (x, y) -plane can be replaced by harmonic 
polynomials in (x, y) which differ only slightly from them, 
without essentially altering the convergence properties of 
series expansions of arbitrary functions in terms of them. 
More explicitly, we state the following theorem [Walsh, 2], 

Let C be a simple finite analytic curve in the (x, y)-plane. 
Then there exist harmonic polynomials \pk(x, y)} such that if 
fix, y) is defined and continuous on C and on C is of bounded 
variation, then f (x, y) can be developed into a series 

00 

(7) ƒ0,30 = Y^akpk(x,y), 
/c=0 

which converges uniformly in the closed interior of C. Series (7) 
thus represents a function harmonic interior to C, continuous in 
the corresponding closed region, and having the value f(x, y) 
on C. There exist continuous functions {^(x, y)} on C 

* Removal of brackets in series (6) can be justified in the cases to which 
reference has been made. 
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I Pk(x,y)qm(x,y)ds = < ' 
Jc \ 1, 

with which the polynomials {pk(x, y)} form a biorthogonal set: 

0, if k 7* tn, 

if k = m. 

The coefficients of (!) are given by the formulas 

(8) ak = I f(x,y)qk(x,y)ds ; 
J c 

the f unctions qk(x, y) depend on C but not onf(x, y). 
If the function f (xt y) is known merely to be continuous on C, 

then the series (7), where the ak are given by (8), converges 
throughout the interior of C, uniformly on any closed point set 
interior to C; if summed by the method of Cesàro this series 
converges uniformly on and within C and thus represents a 
solution of the Dirichlet problem for the region interior to C and 
the boundary values f (x, y). 

If the function f(x, y) is of bounded variation on C, but not 
necessarily continuous, then the series (7), where the ak are 
given by (8), converges at every point of the closed region, uni­
formly on any closed point set interior to C. The function repre­
sented is bounded in the closed interior of C and approaches 
the boundary values f(x,y) continuously at every point of 
continuity off(x, y). 

This theorem as stated applies only to an analytic curve C, 
but the writer has some further results, as yet unpublished, 
which apply to much more general curves. 

Still another method of defining a set of harmonic poly­
nomials belonging to a given region bounded by a rectifiable 
Jordan curve is that of orthogonalization. We begin with 
the harmonic polynomials 

1, r cos0, rsind, r2 cos 26, f2 sin 20, • • • 

and orthogonalize them with respect to the given curve C. 
This yields a set of polynomials {pk(x, y)} such that 

J ( 0, k 9* m, 
pk(%,y)pm(x,y)ds = < 

c \ 1, k — m. 
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An arbitrary function f(x, y) defined on C can be expanded 
formally in terms of these polynomials : 

00 /% 

(9) f(x,y) ~ J2akpk(%,y), ak = I f(x,y)pk(xyy)ds. 
&-o J c 

This orthogonalization method was used by Szegö [ l ] in the 
corresponding case of polynomials in the complex variable. 
The results in the present case have been established by 
Merriman [ l ] , who determines the asymptotic formulas 
for the polynomials {pk(x, y)}, and shows, under suitable 
restrictions, that the series (9) converges interior to C or 
even uniformly in the closed interior of C. The sum of the 
series is of course the solution of the Dirichlet problem for 
the continuous boundary values ƒ (x, y). 

It would be of interest to investigate the corresponding 
problems where the harmonic polynomials are orthogonalized 
not with respect to arc length on the boundary, but with 
respect to the area of the region interior to C [compare 
Bergmann 1, Carleman 1]. The former method has the 
theoretical advantage, however, of not requiring for ex­
pansion the knowledge of the values of the harmonic function 
except on the boundary of the region. Another general 
problem which deserves treatment is the detailed study of the 
convergence on C of expansions in terms of the special 
polynomials of Faber and others, either for the case of 
analytic or of harmonic functions, where the given function 
to be expanded is not known to be analytic or harmonic in 
the closed region. 

4. Degree of Approximation. We have considered thus far 
the possibility of approximation by harmonic polynomials 
and the expansion in terms of a particular set of harmonic 
polynomials. We turn now to consideration of the degree of 
approximation, that is, the relation between the properties 
of the function approximated, with regard to existence of 
derivatives etc. on the one hand, and the asymptotic 
properties of the maximum error in the best approximation 
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by a harmonic polynomial of degree n,* on the other hand. 
A simple result [Walsh, 3] here is the analog and conse­
quence of the corresponding result in approximation of 
analytic functions by means of polynomials in the complex 
variable. 

Let C be an arbitrary closed Jordan region of the (x, y)-plane, 
and let w = <f)(z), z = x+iy, be a function which maps conform-
ally the exterior of C onto the exterior of the unit circle in the 
w-plane so that the points at infinity correspond to each other. 
Let CR denote the curve \<t>{z) \ = R, R> 1, that is, the transform 
in the z-plane of the circle \w\=R. 

A necessary and sufficient condition that an arbitrary func­
tion u(x, y), defined in C, be harmonic in the (closed) region C 
is that there should exist harmonic polynomials pn(x, y) of 
degree n, n = 0, 1, 2, • • • , and numbers M, R>1, such that 
the inequalities 

i i M 

(10) u(x,y) - pn(x,y) | ^ — > 
Rn 

where M and R are independent of n and of (x, y), should be 
valid for every point (x, y) of C. 

If the polynomials pn(x, y) are given so that (10) is satisfied 
for every (x, y) of C, the sequence {pn(x, y)} converges every­
where interior to CR and uniformly on any closed point set 
interior to CR, SO the function u(x, y) is harmonic throughout 
the interior of CR.^ 

If u(x, y) is given harmonic in the closed region interior to 
Cp, the polynomials pn(x, y) can be chosen to satisfy (10) with 
R^Pjfor (x, y) in C. 

* The polynomial a^xn-\-ai%n~ly-\- • • • + any
n Jrhxn~1 + bixn~2y -f • • • 

is considered to be of degree n, but if the term degree is used in the restricted 
sense, is of degree n if and only if at least one of the coefficients ai is differ­
ent from zero. 

t Here and below we tacitly assume that if u(x, y) is not originally 
supposed to be defined on the entire point set considered, then the definition 
in the new points is to be made by harmonic extension—or what amounts 
to the same thing—by means of the convergent series of harmonic poly­
nomials. 
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This theorem seems to be the only one in the literature 
concerning degree of approximation by harmonic poly­
nomials, except in the case that C itself is a circle, when 
approximation by harmonic polynomials reduces to ap­
proximation on the circumference by trigonometric poly­
nomials, for which well known results have been obtained 
by Bernstein, Jackson, Montel, de la Vallée-Poussin, and 
others [see de la Vallée-Poussin, l ] . There is obviously 
occasion here for further investigation. If u(x, y) is given 
harmonic within, continuous on and within the Jordan curve 
C, what is the relation between the maximum error for the 
best approximation of u(x, y) on C by a harmonic poly­
nomial of degree n on the one hand, and the continuity 
properties of the curve C and of the function u(x, y) on C on 
the other hand? If u(x, y) is given harmonic within, continu­
ous on and within CR, what is the relation between the maxi­
mum error for the best approximation on C by a harmonic 
polynomial of degree n on the one hand, and the continuity 
properties of the curve C and of the function u(x, y) on the 
curve CR on the other hand ? 

Let us stop for a moment to consider the Tchebycheff 
harmonic polynomial for the function u(x, y) on a point set 
C, that is, the harmonic polynomial pn(x, y) of degree n for 
which the maximum \u(x, y) — pn(x, y) |, (x, y) on C, is least. 
I t is convenient here to refer to a general theorem due to 
Haar [ l ] , which deals with approximation on a given point 
set C of a given function u(x, y) by linear combinations of 
given functions {ui(x, y)} ; the coefficients a»- are to be deter­
mined so that the maximum 

(10') | u(x,y) - aiui(x,y) - • • • - amum(x,y) \ 

is least for (x, y) on C. If C is closed and the u's are con­
tinuous, such a determination of the coefficients is possible 
[Haar, loc. cit.] and the corresponding linear combination 
of the Ui(x, y) may be called a Tchebycheff polynomial of 
order m. Haar 's theorem asserts—except for incidental 
restrictions on the continuity of the functions and the 
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closure of the point set—that a necessary and sufficient 
condition for the uniqueness of the Tchebycheff polynomial of 
order m for approximation on C to an arbitrary function con­
tinuous on C, is that no function 

Axui(x,y) + • • • + Amum(x9y), 
( 1 0 " ) i i i i i i 

| ^ i | +\A2\ + • • - + \Am\ 5*0, 
shall vanish at more than m—\ points of C. It is immaterial 
whether one studies on the one hand the approximation in a 
closed Jordan region C by harmonic polynomials of a func­
tion harmonic interior to the region, continuous in the closed 
region, or on the other hand the approximation on the boun­
dary of the region of the boundary values of the harmonic 
function. For the maximum in C of the function in (10') 
must occur on the boundary of C. Fréchet has proved that 
the Tchebycheff trigonometric polynomial is unique for 
approximation to an arbitrary continuous function fid) 
with period 2-zr on the interval 0^0^27r . That is, from our 
present standpoint (compare §1), the Tchebycheff harmonic 
polynomial is unique for approximation to a continuous func­
tion on a circumference C, or for approximation on and within 
a circle to a function continuous there, harmonic in the interior. 
This statement is true, however, only with a restriction. The 
Tchebycheff polynomial which is a linear combination of the 
functions 1, r cos 6, r sin 6, • - • , rn cos nO, rn sin nd is in­
deed unique, for an arbitrary linear combination (10") of 
these functions vanishes on an algebraic curve of degree n, 
and this curve has at most In points in common with the 
circumference C* In fact, this method proves that the 
corresponding Tchebycheff harmonic polynomial is unique for 
approximation on an ellipse C to a function continuous on C, 
or for approximation on and within C of a function harmonic 
interior to C, continuous in the corresponding closed region. 

TheTchebycheff polynomial, which is a linear combination 

* The circumference cannot be a branch of this curve, for the function 
(10") cannot vanish everywhere on any (limited) Jordan curve. 
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of the functions 1, r cos 6, r sin 6, • • • , rn~l cos (n — l)d, 
rn~l sin (n — \)d, rn cos nd, is not necessarily unique either 
when C is a circle or an ellipse. Indeed, if n = 1, the function 
(10") is A!+A2x, which obviously for suitable choice of 
A i and A 2 vanishes at more than a single point of the circle 
or ellipse C. 

It would be an interesting investigation, to determine 
what algebraic curves C have this property, that the Tcheby­
cheff harmonic polynomial for approximation to an arbitrary 
function continuous on C is unique. This is a subject dealing 
with the real intersections of plane algebraic curves, in which 
a single point of intersection counts merely as a single point, 
in spite of singularities and multiple points (in the usual sense 
of the term) of either curve. 

Whether or not the Tchebycheff harmonic polynomial 
tn(x, y) of degree n is unique, a Tchebycheff polynomial 
tn(x, y) of degree n exists, and we can derive certain properties 
of the sequence \tn(x, y)\. In the notation of the previous 
theorem, we shall prove the following facts. 

Let the function u(x,y) be harmonic in the closed interior of C, 
and have at least one singularity on the curve Cp but no singu­
larity interior to Cp. Then a sequence {tn(x, y)} of Tchebycheff 
harmonic polynomials for the function u(x, y) considered in 
the closed interior of C (or what is essentially the same, con­
sidered on C itself), whether or not the Tchebycheff polynomial 
is unique, converges throughout the interior of Cp) and uni­
formly on any closed point set interior to Cp. The limit of the 
sequence throughout the interior of Cp is u(x, y). The sequence 
can converge uniformly in no region Cp, with pr>p. 

The proof is immediate. There exists, by the theorem al­
ready stated, some sequence {pn(x, y)}, where pn(x, y) is of 
degree n, such that we have 

1 1 M 

(10) I u(x,y) - pn(x,y) | ^ — , (x,y)mC, 

provided merely that R<p. If (10) is valid for the poly-
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nomial pn(x, y), it is also valid if pn(x, y) is replaced by 

tn(x, y) : 

i i M 

I u(%,y) — tn(x,y) I ^ —; (x,y) in C, 
Rn 

provided still that R<p. Again by virtue of the theorem 
stated, the sequence {tn(x, y)} must converge interior to 
every CR for which R<p, hence throughout the interior of 
Cp> uniformly on any closed point set interior to Cp. In 
particular, if the function u(x, y) has no singularity except at 
infinity, the sequence converges at every point of the plane, 
uniformly on any limited closed point set. In the general 
case, the sequence {tn(x} y)} cannot converge uniformly on 
any curve C9' for which p'>p, for then it would likewise con­
verge uniformly in a region containing Cp, which has on it a 
singularity of the function u(x, y). 

The theorem just established is the analog of a theorem 
due to Faber [2, p. 105] for the case of approximation to an 
analytic function by polynomials in the complex variable. 
The proofs are, however, different, and the present proof 
applies without essential change in that other situation, even 
if C is a Jordan arc or a certain more general point set, instead 
of a Jordan region. 

I t will be noticed that the sequence {/„(#, y)} may 
converge for certain points (x, y) exterior to Cp. Let us 
suppose for instance that the region C is symmetric on the 
x-axis and that the function u(x, y) satisfies the equation 
u(x, y) = — u(x, —y). Then a given tn{x, y) may be replaced 
by another Tchebycheff polynomial tJl (x, y) of degree n 
which satisfies the equation t£ (x, y) = —tJl (x, ~-y) and which 
approximates u(x, y) on C as closely as does tn(x, y). If we 
have 

I u(x,y) - tn(x,y) | g e, (x,y) on C, 

we have likewise by symmetry 

I u(x, - y) ~ *n(x, - y) | S c, (x,y) on C, 
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tha t is, 

I u(x,y) + tn(x,-y) I ^ e, (x,y) on C. 

If we set 

tn(x9y) - tn(x,—y) 
tn(x,y) = > 

the harmonic polynomial tl (#, y) obviously satisfies the 
functional equation considered, and we have the inequality 

| u(x,y) - ti(x,y)\ ^ e, (x,y) on C ; 

that is to say, the polynomial tl (x, y) is as good an approxi­
mation to u(x, y) on C as is tn(x, y).* Interpret tl (x, y) as a 
linear combination of the functions rn cos n6, rn sin nd, hence 
as a linear combination of the functions rn sin nd. The se­
quence {tn {x, y)} converges for 0 = 0 for all values of r, no 
matter how small C may be or where the singularities of 
u(x, y) may lie. 

We have thus far restricted our entire discussion of the 
degree of approximation by harmonic polynomials to the 
consideration of point sets C which are regions. Tha t is 
probably the simplest case; the study of the same problems 
where C is, let us say, a Jordan arc, is more complicated. 
Complication arises because a harmonic polynomial may 
vanish identically on C, so that convergence on C of a se­
quence of harmonic polynomials, even so that (10) is satis­
fied on C, does not imply convergence of the sequence for 
points not on C. Let us treat here in detail the simplest pos-

* We have essentially proved here tha t if the function u(x, y) can be 
uniformly expanded by harmonic polynomials on a point set C which is 
symmetric in the x-axis and if we have u(x, y) = —u(x} —y), then u(xt y) 
can likewise be uniformly expanded on C by harmonic polynomials pn(x, y) 
which satisfy the equation pn(x, y)= —pn(x,—y). 

Another theorem of the same general nature easily proved by methods 
already used elsewhere for functions of a complex variable is tha t if an 
arbitrary function u(x, y) can be uniformly expanded by harmonic poly­
nomials on a point set C, then u(x, y) is the uniform limit of a sequence 
of harmonic polynomials each of which is equal to u(x, y) in n arbitrary 
preassigned points of C, 
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sible case, namely that C is an interval of the axis of reals; 
the result is also valid if C is any line segment. 

Suppose that u(x, y) is defined on C and that a set of poly­
nomials {pn(x, y)} exists so that (10) holds on C for R>1. 
On C a harmonic polynomial of degree n is a polynomial in x 
of degree n. Inequality (10), valid for a polynomial pn(x, y) 
in x of degree n, implies the convergence of this sequence of 
polynomials considered as polynomials in the complex variable x 
throughout the interior of CR (which is defined here as al­
ready indicated for a region C), uniformly on any closed 
point set interior to CR, and hence represents interior to CR 
an analytic function of the complex variable x. This is in­
deed a theorem due to Bernstein, and in the present case the 
curve CR is a certain ellipse whose foci are the extremities of 
the interval C I t follows that there exists a function U(x, y)} 

harmonic interior to CR, coinciding on C with the given f unction 
u(x, y). There are two important differences between this 
result and the result established for the case that C is a Jor­
dan region. First, we have not shown in the present case, 
nor is it necessarily true, that the original given sequence 
of harmonic polynomials \pn(x, y)\ converges everywhere 
interior to CR. Second, the function U(x, y) is not uniquely 
determined by the requirements of being harmonic interior 
to CR and coinciding on C with the given function u(x, y) ; 
if any such function U(xy y) is at hand, we may find another 
by adding to it an arbitrary function harmonic interior to CR 
and vanishing on C. 

Reciprocally, if it is desired to establish (10) when the 
function u(x, y) is given harmonic on and within CR} that 
can always be done if C is an arbitrary Jordan arc, or indeed 
a much more general point set. The result follows from the 
corresponding result for the development of analytic func­
tions in terms of polynomials in the complex variable 
[compare Walsh, 3]. 

Before we leave the subject of approximation by harmonic 
polynomials and turn to harmonic rational functions, we 
mention another topic which seems not to have been treated 
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in the literature and yet which deserves to be investigated, 
namely, interpolation by means of harmonic polynomials. 
When does a harmonic polynomial of degree n exist which 
takes on preassigned values at 2n+l points? When is it 
unique? What of the asymptotic character of the poly­
nomial as the number of points becomes infinité? What 
application is there to approximation and expansion, if these 
points are chosen on the boundary of a region ? These ques­
tions have been answered in special cases, corresponding to 
trigonometric interpolation [see Faber, 3, Jackson, 1, de la 
Vallée-Poussin, l ] , and also for the analogous problem of 
interpolation by polynomials in the complex variable 
[Fejér, l ] . The former case yields satisfactory results (com­
pare §1) for interpolation by harmonic polynomials either on 
a circumference or on and within a circle, but for more general 
situations the questions seem still to be untouched.* 

5. General Approximation by Harmonic Rational Func­
tions. The results thus far established for approximation by 
harmonic polynomials have precise analogs for approxi­
mation of arbitrary harmonic functions by harmonic rational 
functions; these analogs will now be treated in the same 
order, and the proofs follow, in the main, the proofs for the 
simpler case. The results in the present case, however, are 
mostly new to the literature and must therefore be treated 
here in some detail. This newness explains the apparent lack 
of balance between the treatment of the two cases of approxi­
mation, by harmonic polynomials and by more general har­
monic rational functions. 

* These results of Fejér do yield simple theorems immediately. Thus 
we may make the following statement. 

Let C be an arbitrary Jordan curve, and let the function u(x,y) be harmonic 
on and within C. Then there exists a sequence of harmonic polynomials 
{pnix, y) ) of respective degrees n coinciding with u(x, y) at n points Pi of Cf 

which converge uniformly on and within C to the f unction u(x, y). These n 
points Pi can be chosen as points öf C which correspond, under conformai 
mapping of the exterior of C on the exterior of a circle K so that the points at 
infinity correspond to the vertices of a regular polygon of n sides inscribed in K. 
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Let the function u(x, y) be harmonic in the closed region C 
bounded by two analytic Jordan curves G and C2, with C2 

interior to G and the origin interior to C2. Green's formula 

1 r r d log r dul 
u(x,y) = — I u — logr— Ids, 

2w J ct+c2 L dn dnj 
where the integrals are to be taken in the positive sense with 
respect to the region, n being the inner normal, breaks up the 
function u(x, y) into a function harnionic on and interior to 
G, plus a function harmonic on and exterior to C2, plus a 
multiple of log r, where r2 = x2+y2 [see Osgood, 1, pp. 642-
644, Walsh, 1, p. 206]. Consequently the function u(x, y) can 
be approximated in the closed region C as closely as desired 
by a harmonic polynomial in (x, y) plus a harmonic poly­
nomial in 

\#2 + y2 x2 + y2 

plus a multiple of log r. A similar situation obtains if C is 
bounded not by two Jordan curves but by n Jordan curves, 
and is not materially altered if these bounding curves are not 
analytic, nor if u(x, y) is not harmonic in the closed region, 
but is continuous in the closed region and harmonic in the 
interior. 

We are in a position however to establish a more general* 
theorem. 

Let C be a closed point set which does not contain the point at 
infinity and which contains no region of infinite connectivity 
not included in a larger region of finite connectivity belonging 
to C. Let f{x y y) be an arbitrary f unction continuous on C and 

* More general, that is, so far as concerns the point sets and functions 
considered; actually less specific in one regard, for the older theorem splits 
up the given function into 2n — 1 functions, of which n — 1 are logarithms 
and left unchanged in the approximation. The other n functions are 
harmonic in simply-connected regions in whose interiors C lies, and each 
of these n functions can be uniformly approximated or expanded in terms 
of harmonic rational functions in the corresponding simply-connected 
region. 
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harmonic in the interior points of C. Then if an arbitrary 
positive e be given, there exists a harmonic function </>(x, y), 
namely, a polynomial in (x, y) and in 

/ x — Xi y — y% \ 

\ 0 — Xi)2 + (y — yi)2 O — Xi)2 + (y — yl)
2)i 

such that we have 

(11) \f(x,y) - 4>(x,y) - ax log n 

— a2 log r2 — - - - — am log rm\ < e, (x}y) in C, 

where the ai are suitable constants and r? = (x — Xi)2-\-(y — yi)2. 
Here the points (xi, yt), i = 1, 2, • • • , are exterior to C, and can 
be preassigned, one in each of the regions R into which C 
separates the plane, although all of such preassigned points 
do not necessarily appear in (11). 

In particular if C has no interior points, an arbitrary func­
tion f (x, y) continuous on C can be so approximated. 

Let us outline the proof; the method is essentially due to 
Lebesgue. Let K be a circle which contains C. There exists 
a function F(x, y) continuous on and within K and which 
coincides with ƒ(x, y) on C. There exists a polynomial p{x, y) 
in {x, y) which is not necessarily harmonic but which through­
out K differs from F(x, y) by less than e/3. Divide the plane 
into squares and continue subdivision indefinitely, by halving 
the sides of the squares already constructed, so that we de­
termine a sequence of closed point sets Si, each of which con­
sists of a finite number of regions each bounded by a finite 
number of non-intersecting Jordan curves, of such a nature 
that each Si contains C in its interior, so that each 5* 
contains its successors, but so that every point exterior to 
C is exterior to some Si. By suitable modification of these 
point sets 5* if necessary, we can make sure that no two 
of the closed regions composing any particular Si have a 
point in common. Let hi(x, y) be the function harmonic 
throughout the interior of Si, continuous on Si, and coin­
ciding on the boundary of Si with the function p(x, y). 
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Then we have [Walsh, 1, p. 199] lim^^h^Xj y)=p(xy y) 
uniformly on the boundary points of C. That is, in par­
ticular we can choose k so that \hk{x, y) — p(x> y)\ <e/3 
uniformly on the boundary of C. But on C the function 
hk(x, y) can be uniformly approximated by a function of the 
sort considered in the theorem: 

(12) | hk(x,y) — <j>{x,y) — ax log rx 

— • • • - - a» log rTO| < —; (x,y) on C, 

and the points (#», y%) lie exterior to C. In fact, if the points 
(xi, yi) are not preassigned, we can [loc. cit., p. 208] satisfy 
(12) on the entire point set 5&. If the points (x{, yi) are pre­
assigned, we can make the approximation (12) not on the 
point set Sk but on a point set Si of the same connectivity 
as Sk, bounded by a finite number of non-intersecting Jordan 
curves, which is contained in Sk, which contains C, but which 
contains precisely those of the preassigned points (#,-, yi) 
which lie in regions R lying entirely in Sk» In this new 
approximation (12), which holds in Sk and hence in C, 
we use only the preassigned points (xu yi). 

Combination of the inequalities obtained yields (11) uni­
formly for all points on the boundary of C. But all the func­
tions in the left-hand member of (11) are harmonic in the 
interior points of C, continuous on the corresponding closed 
point set, and such a function has no maximum or minimum 
in an interior point. Hence inequality (11) holds for all 
points of C, and the theorem is established. 

We mention explicitly that it is not true that an arbitrary 
function continuous in a limited closed region and harmonic 
interior to the region can be uniformly approximated in that 
region as closely as desired by a harmonic rational function, 
either with or without logarithmic terms as considered in 
(11). Consider for example the region C formed from the 
circle x2+y2<l by cutting out the line segment 3> = 0, 
—1/2 ^ # ^ 1/2; let f(x, y) be the function harmonic interior 
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to this region, continuous in the closed region, zero on the 
circumference, and unity on the line segment. The function 
ƒ(#> y) cannot be uniformly approximated in the closed 
region. For the approximating functions have only isolated 
singularities [Osgood 1, p. 680], are continuous without 
exception in the closed region (else are not uniformly boun­
ded), hence are harmonic in the closed region. These approxi­
mating functions can be uniformly approximated as closely 
as desired in the closed region C by harmonic polynomials 
in (x, y), sof(x, y) can also be uniformly approximated in C 
as closely as desired by a harmonic polynomial in (x, y). 
But if such a polynomial differs from ƒ(#, y) by less than e 
for points on x2+y2 = l, that polynomial differs from zero 
by less than e for all points x2+y2<l> which is a contra­
diction for x = y = 0 if e< 1/2. 

The general theorem we have proved, culminating in 
inequality (11), is obviously not an exhaustive discussion of 
its subject-matter. If C is a closed region of infinite connec­
tivity, is it true that an arbitrary function f(x, y) harmonic 
interior to C and continuous in the closed region, can in the 
closed region be uniformly approximated as closely as de­
sired, as in (11)? Is our general theorem true without any 
restriction as to regions of infinite connectivity? Is it true 
that if C is an arbitrary closed point set without interior 
points, then an arbitrary function f(x, y) continuous on C 
can be uniformly approximated on C as closely as desired by 
a rational harmonic function without logarithmic terms? 

Even though we are not in a position to answer this last 
question, there are specific closed point sets C on which an 
arbitrary continuous function can certainly be approximated 
as closely as desired by a harmonic rational function. In 
fact, an arbitrary closed point set C which consists of a finite 
number of Jordan arcs which do not divide the plane into an 
infinite number of regions has this property. More generally, 
[compare Walsh, 5] if C is such a point set that an arbitrary 

function continuous on C can be approximated on C as closely 
as desired by a rational function of the complex variable, then 
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C also has the property considered. For let ƒ(#, y) be the given 
(real) function; a rational function p(z) of z exists so that 
we have \f(x, y)—p(z) \ <e , (x, y) on C, where € is preas-
signed. Hence we have also \f(x,y)—r(x, y)\<e, (x, y) on C, 
where r(x, y) is a rational harmonic function of (x, 3;), the 
real part of f(z). 

We do not at tempt to approximate the most general func­
tion harmonic in a multiply-connected region C by harmonic 
rational functions without the use of logarithmic terms, for 
that is impossible, as we shall now prove, if the closed region 
cannot be considered as a closed simply-connected region.* 
We choose C limited, so there exists an analytic Jordan curve 
/ interior to C, whose interior contains points not belonging 
to the closed region C; let us assume the origin to be such a 
point, so that the function log r1 where r2 = x2+y2, is harmonic 
in the closed region C. Assume the approximation possible, 
so that log r can be expanded in C in a uniformly convergent 
series of harmonic rational functions. These rational func­
tions have only isolated singularities and are continuous in C, 
hence harmonic throughout the interior of C. Differentiate 
this series term by term in the direction of the normal to J", 
and integrate the resulting series over / term by term 
[Osgood 1, pp. 652-653]. For each term of the series, the 
result of this process is zero [Osgood 1, p. 680 ], but for the 
function log r the result is 27r. We thus have the contradic­
tion 27T = 0, and the statement is established. 

The entire discussion we have given enables us to answer 
the question as to whether a function given on an arbitrary 
closed point set C can be uniformly approximated on that 
point set by harmonic rational functions plus logarithmic 
terms, with singularities in assigned points not belonging to 
C, provided that no region of infinite connectivity is involved. 
The facts and proofs are so similar to the corresponding 
facts and proofs for the case of approximation by harmonic 
polynomials [Walsh, l ] that they are omitted. 

* Already proved [Walsh 1, p. 206] in a special case. 
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I t is not our purpose to study non-uniform expansion of 
harmonic functions, but one result is now interesting and yet 
so obvious that we mention it here ; it is still an open problem 
to determine in general what functions can be expanded not 
necessarily uniformly in terms of harmonic rational functions 
either with or without logarithmic terms. 

Let Co be an arbitrary open point set, which may be empty. 
Let Ci, C2, - • • be closed point sets (any or all of which may be 
empty) mutually exclusive and having no common point with Co, 
and on each of the point sets C0, Ci, • • • let the f unction u{x, y) 
be expansible by harmonic rational functions plus logarithmic 
terms. Then the f unction u(x, y) can be expanded on C0+C1 
+ C2 + • • • in a series of rational harmonic functions plus 
logarithmic terms. The series converges uniformly on each of 
the point sets G, C2, • • • on which u(x} y) is uniformly ex­
pansible, and if u(x, y) is harmonic on Co, except possibly for 
logarithmic singularities or singularities corresponding to 
rational harmonic f unctions, then the series converges uniformly 
on every closed point set contained in Co. 

We use \l/(x, y) generically to denote a rational harmonic 
function with logarithmic terms, such as occurs in (11). Let 
Su S2, • • • be closed point sets, each consisting of a finite 
number of mutually exclusive regions, each bounded by a 
finite number of non-intersecting Jordan curves, and such 
tha t Sk Hes interior to Co, that Sk lies interior to 5&+1, and 
that every point of Co lies in some Sk» Let us suppose 

u(x,y) = \\m\pkn(x,y), [(x,y) onC&, k = 0 ,1 ,2 , • • • ] , 

where this limit is approached uniformly if u(x, y) is uni­
formly expansible on C&, k^l, and uniformly on every 
closed point set in C0 for k = 0 if that is possible. Then we 
can determine a closed point set Bu, consisting of a finite 
number of mutually exclusive closed regions each bounded 
by a finite number of non-intersecting Jordan curves, which 
contains G but has no point in common with S\. We can 
also determine i^i(#, y) (see the lemma below) such that 
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I ^i(x,y) - H*(*>y) | < h (x,y) on Si, 
I fa(*,y) - tn(%,y) | < h (x,y) on Bu. 

Let Bu be a closed point set of the topological simplicity of 
Bn, which contains G but has no point in common with 
S2 or C2. Let B21 be a closed point set likewise of the topo­
logical simplicity of Bn, which contains G but has no point 
in common with S2 or J3i2. Choose ^ ( x , y) so that we have 

I fa(x,y) - $M(x,y) I < h (x,y) on s2, 
I fa(x,y) - tn(x,y) I < I , (x9y) on Bu, 

I fa(x,y) - fci(x,y) I < i , (a,?) on J52i. 

We continue this process; in general B\n shall contain G 
but shall have no point in common with Sn or G, G, • • • » 
Cn. The point set J52(W_i shall contain G but shall have no 
point in common with G, • • • , C», 5 n or Bïn. The point set 
Bni shall contain Cw but shall have no point in common with 
Sn or Bin, B2,n-h • • • , .Bn-1,2. The function ^»(#, 3>) is then 
to be chosen so that we have 

1 1 1 

I tn(x,y) — \po,n+i (x,y) I < -y (x,y) on Sn, 
n + 1 

I 4*n(x,y) — ^in (« ,y ) I < -> (x,y) on J5in, 
w + 1 

I ^ n f a , ? ) - ^ n l O , ? ) I < — > ( * , ? ) On J5m, 

w + 1 
and the sequence {\f/n(x, y)} has the property required in the 
theorem. Uniform convergence of the sequence {ipn(x, y)} 
on a closed point set belonging to G + G + • • • but not 
necessarily a G depends merely on the uniform convergence 
of the corresponding sequence (or sequences) {ypkn{x, y)} on 
that point set. The function u(x, y), if harmonic on G except 
possibly for logarithmic singularities or singularities corres­
ponding to rational harmonic functions, can be chosen arbi­
trarily on Co, and the sequence {\pn(x, y)\ converges to the 
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value u(x, y), uniformly on any closed point set contained 
in C0. 

If none of the point sets Co, Ci, C2, • • • separates any point 
of another of those point sets from the point at infinity the 
theorem is true if the words harmonic rational f unctions plus 
logarithmic terms are replaced by harmonic polynomials. For 
uniform convergence on any closed point set contained in 
Co, however, we require that u(x, y) should be harmonic in 
Co and that Co should be composed of mutually exclusive 
simply-connected regions. In the discussion just given we 
have had occasion to apply the following lemma. 

LEMMA. If Si and 52 are mutually exclusive closed point 
sets each consisting of a finite number of mutually exclusive 
regions each bounded by a finite number of non-intersecting 
Jordan curves, and if the functions \pi(x, y) and 1̂ 2(#, y) 
are rational harmonic functions with logarithmic terms, then 
if € > 0 be given there exists a rational harmonic function 
\{/(x, y) with logarithmic terms so that we have 

I H%,y) - ^i(x,y) I < €, (x,y) in S1} 

I IK*,?) ~ Ï2(oc,y) I < €, (x,y) in S2. 

For simplicity in the proof we assume that both Si and S2 
are limited. We write \f/i(x, y) = yp{ (x, y) + \l/{' (x, y), where 
\p{ (x, y) has no singularities in Si and ty{' (x, y) has none in 
S2. Similarly set faix, y) = \p2f(x, y) + ^2ff(x, y), where 
xf/2 (x, y) has no singularities in 62, and ypi' (x, y) none in Si; 
this splitting up is possible in the present case, but a slight 
modification may be necessary, due to the presence of 
logarithmic terms, if the point at infinity belongs to Si or 52 . 
It is possible [Walsh, 1, p. 208] to determine \l/'(x, y) so tha t 
the inequalities 

I 4t'(x,y) - iti(x,y) +\lsi'(x,y) I < e, (x,y) in Si, 

\ip'(x,y) -$i(x,y) +\l*l'(x,y)\ <e, (x,y) in 5 2 , 

are satisfied. These inequalities, if we set 

yp{x,y) = \p'(xyy) +^{'{x,y) +^l'{x,y), 
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are the inequalities it is desired to establish. 
We mention explicitly the general question of the possi­

bility of the expansion of given functions in terms of harmonic 
polynomials or in terms of harmonic rational functions when 
the restriction of uniformity of convergence is not made. This 
question seems not to be completely answered in the litera­
ture, although Lavrentieff [ l ] has recently announced some 
results without proof, and Hartogs and Rosenthal [ l ] have 
published an important paper on the corresponding subject 
for expansion in terms of polynomials in the complex variable. 
I t is worth noting that Osgood's classical theorem [2] in this 
corresponding subject has the following analog in the present 
one. 

If there converges in a region R a sequence of functions 
{un(x, y)} harmonic in R, then this sequence converges uni­

formly in some sub-region of R. 
From this theorem follows directly Osgood's better known 

result, that if there converges in a region R a sequence of f unc­
tions {fn(z)} analytic in that region, then this sequence con­
verges uniformly in some sub-region of R. For since the 
sequence \fn(z)} converges, the sequence {un(x, y)} of the 
real parts of these functions converges in R, hence uniformly 
in some sub-region R' of R. Convergence of the sequence 
{ivn(x, y)} of the pure imaginary parts of the functions fn(z) 
at a single point of R' is now sufficient to ensure convergence 
of the sequence {ivn} and hence of the sequence {fn(z)} 
uniformly in any simply-connected closed proper sub-region 
of R'. 

Let us indicate briefly the proof of the theorem for har­
monic functions. We prove first, after Montel [l, p. 109], 
but this is only a modification of Osgood's proof, that the 
sequence {un(x, y)} is uniformly bounded in some sub-region 
of R. Otherwise we should have some \uni(x, y)\ > 1 at some 
point of Ry hence in some sub-region Ri of R. If the sequence 
{un(x, y)} is not uniformly bounded in Ri, we must have 
|^n2(#, y) I > 2 at some point of Ri, and therefore in some 

sub-region R2 of Ri. Proceeding in this way we arrive at 
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a sequence {unje(x, y)} greater in absolute value than {k} in 
Rk. There is at least one point common to all the Rk, and 
at this point the original sequence cannot converge. 

From the boundedness of the original sequence in some 
sub-region R' it follows [compare Osgood, 2] that the first 
partial derivatives of these functions are uniformly bounded 
in an arbitrary closed sub-region of R', hence that the 
functions {^n(#, y)} are equicontinuous in this sub-region 
and therefore converge uniformly there. 

We shall not go into great detail on the subject of rational 
harmonic functions belonging to a region, for the discussion can 
be made to depend upon the discussion for harmonic poly­
nomials belonging to a region. Let a region C be bounded by 
the Jordan curves Co, Ci, • • • , Ck, of which no two have a 
common point, and so that the curves Ci, C2, • • • , C& lie 
interior to Co. Let u(x, y) be an arbitrary function harmonic 
interior to C and continuous in the closed region. As has 
already been suggested, Green's formula applied to u(x, y) 
not for the region C but for a neighboring region C of the 
same connectivity interior to C splits up the function 
u(x, y) into k logarithmic terms with singularities at infinity 
and at points interior to Ci, C2, • • • , C& respectively, which 
may be preassigned, plus k functions harmonic exterior res­
pectively to Ci, C2, • • • , Ck, including the point at infinity, 
and continuous in the corresponding closed regions, plus a 
function harmonic interior to Co and continuous in the 
corresponding closed region. If the curves C0, Ci, • • • , Ck 
are suitably restricted, the regions interior to C0 and exterior 
to Ci(i = l, 2, • • • , k) respectively have associated with 
them (compare §3) sets of rational functions, in fact poly­
nomials in (x} y) and in 

/ x — Xi y — y% \ 

\ (x - Xi)2 + (y — yd2 O - a»)2 + (y - yd2 / 

respectively, and the last mentioned k + 1 functions can be 
respectively expanded in terms of these functions. 

I t would be an interesting problem, however, to construct 
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for the region C a single set of normal orthogonal harmonic 
rational functions (with also k logarithmic functions) in 
terms of which an arbitrary harmonic function could be 
expanded. Here orthogonal may mean (1) with respect to 
area (that is, surface integral over C) or (2) with respect to 
length (that is, line integral over Co, Ci, • • • , Ck). Such a 
set of functions can easily be constructed by the process of 
orthogonalization, starting with the logarithmic and rational 
functions we have been using. If interpretation (2) is used, it 
is true that if the curves Co, Ci, • • • , Ck bounding the region C 
are analytic, and if the f unction u(x, y) is harmonic interior to 
C, continuous in the corresponding closed region, then the form­
al expansion of u(x, y) in terms of these normal orthogonal 
functions belonging to C converges to the value u(x, y) throughout 
the interior of C, uniformly on any closed point set interior to 
C. This follows from the reasoning as given by Merriman [l ] ; 
but questions of asymptotic character of the normal ortho­
gonal functions and of uniform convergence of the formal 
expansion in the closed region C, are there left unanswered 
under the present general hypothesis on the region C. 

6. Degree of Approximation by Rational Harmonic Functions. 
Our results on the degree of approximation to a harmonic 
function by rational harmonic functions are to be obtained 
with the help of the corresponding results on the degree of 
approximation to an analytic function by rational functions 
of the complex variable, so as a preliminary study we need 
to consider the relation between the degree of a rational 
harmonic function and the degree of the corresponding 
analytic function. In this discussion we use the word 
degree to indicate degree in the restricted sense* 

If u(x, y) is a harmonic polynomal of degree n, then its 
conjugate function v(x, y) is likewise a harmonic polynomial 
of degree n and hence the function/(z) =u(x, y) +iv(x, y) is a 

* Compare §4. The degree of a rational function is the greater of the 
degrees of numerator and denominator, or the common degree if the two are 
of the same degree. 
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polynomial in z of degree n. In fact, we may define v(x, y) by 

ƒ'<*»*) (du du \ 

( - — dx + — dy ) +C, 
(o,o) \ dy dx / 

where C is an arbitrary constant. The function/(s) =u(x, y) 
+iv(x, y) can have no singular points other than those of 
u(x, 3/), hence is an entire function. In the Taylor's develop­
ment of ƒ(z) about the origin, the coefficients of powers of z 
higher than the nth vanish; otherwise u(x, y) is not a poly­
nomial of degree n. 

The situation is somewhat more complicated if u(x, y) is a 
harmonic rational function not a polynomial. Osgood [l , 
p. 680] has shown that if u(x, y) is harmonic and rational, 
then f(z) = u(x, y)+iv(x, y), where v(x, y) is defined by the 
equation just given, is a rational function of z. If f(z) is 
given, with no factor containing z common to numerator and 
denominator, 

a0z™ + alZ
m~l + ham 

f(z) = ; dobo T£ 0, 
Jo** + JlS*-1 + • • • + bn 

the real part is found by multiplying numerator and denom­
inator by the conjugate complex quantity of the original 
denominator, 

aQboZmzn + • • • + ambn 

f(z) = — = =- > 
bobQznzn + • * • + bnbn 

and then separating into real and pure imaginary parts. The 
function u(x, y) is then a rational function whose numerator 
is of total degree m+n or less, whose denominator is of 
degree In, and with no factor common to numerator and 
denominator; the actual degree of u(x, y) is m+n or less, or 
2n according as m^n or m<n. Reciprocally, let u(x, y) be 
given in its lowest terms; denote the degrees of numerator 
and denominator by p and 2q respectively, and those of the 
numerator and denominator of the corresponding analytic 
function ƒ(z), which is determined only to within an additive 
constant, by m and n. A necessary and sufficient condition 
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that u(x, y) be harmonic at infinity is that ƒ(z) be analytic 
at infinity, that is, m^n; in this case we have n = q, m^p — q; 
the actual degree of u(x, y) is 2n and that oîf(z) is n. A nec­
essary and sufficient condition that u(x, y) be singular at 
infinity is t h a t / ( s ) be singular at infinity, that is, m>n. 
Here we may write ƒ (z) as a rational function whose numera­
tor is of degree n — 1 or less and denominator of degree n plus 
a polynomial of degree m — n. Then u(x, y) is a rational func­
tion whose numerator is of degree In — 1 or less and denomin­
ator of degree 2n plus a polynomial of degree m — n, or a ra­
tional fraction whose numerator is of degree p = tn+n and 
denominator of degree 2q = 2n; the actual degree of u(x, y) 
ism+n and that oîf(z) is m. 

We can prove the following result concerning approxima­
tion by harmonic rational functions; henceforth we use the 
word degree in its inclusive sense. 

Let S be an arbitrary closed Jordan region of the (x, y)-plane. 
If there exist rational harmonic f unctions rn{x, y)} real parts of 
rational functions of z = x+iy of respective degrees n* such 
that we have 

i i M 

I «(*,y) - rn(x,y) | ^ — > R > 1, 
Rn 

for all points (x, y) of S and for all sufficiently large n, and 
if the singular points of the f unctions rn(x> y) —rn-i(x, y) have 
no limit point on S, then u{x, y) is the real part of a function 
f(z) meromorphic on S. If in addition the functions rn(x, y) 
have no singularities on S, then u(x, y) is harmonic on S. 

Let w = $>(z) denote a function which maps the complement of 
S onto the exterior of the unit circle in the w-plane, so that the 
points at infinity correspond to each other. Let SR denote the 
Jordan curve \ $ (z) | = R, where R > 1. If the singularities of the 
functions rn(x, y)—rn-i(x, y) have no limit point interior to 

* The rational function of z is not determined uniquely by rn(xf y), but 
merely to within an additive constant. Nevertheless the degree, and nature 
and location of the singularities of this rational function are determined 
by rn{x, y) uniquely. 
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Spf then the sequence {rn{x, y)} converges interior to Sv, where 
v = (l+pR1/2)/(p+Rl,2)f and the convergence is uniform on 
any closed point set interior to Sv. Hence f{z) is meromorphic 
interior to Sv and if rn{x, y) has no singularities interior to SV) 

the function u(x, y) is harmonic interior to Sv. 
If the f unction rn(x, 3/) — rn-i(x, y) is the real part of a func­

tion which has at most n poles, for n sufficiently large, we may 
set v = (l+pR)/(p+R), and in particular if the only singu­
larities of rn(x, y) lie at infinity, we may set p= 00, v = R, so 
that the sequence {rn(x, y)} converges interior to SR. 

The proof follows the proof of the corresponding theorem 
[Walsh 3, Theorem I] for approximation by means of 
polynomials. If the f unctions ƒ (3) and tn(z), of which u(x, y) 
and rn(x, y) are respectively the real parts, are properly 
chosen, and if S' is an arbitrary closed region interior to S, 
then the inequality \f(z)— tn(z) | ^ M'/Rn is valid for z in 
S'. If the region 5 ' is a region bounded by a Jordan curve 
uniformly near the boundary of 5, the function w=Qf(z) 
which maps the complement of S' onto the exterior of the 
unit circle in the w-plane differs little from the function 
w = $(z), and the curve SR' : \$'(z) \=R lies uniformly near 
the curve SR: \$(z) \ =R. The theorem follows by virtue of 
the corresponding theorem for approximation to analytic 
functions by means of rational functions [Walsh 4, Theorem 

iv]. 
It is a positive simplification here not to mention the 

degree of rn(x, y) except in connection with tn(z), for such 
widely differing functions as 

x 3x2 + 3y2 + x 

x2 + y2 x2 + y2 

belong in the same category. 
We turn now to the study of the approximation of func­

tions by rational harmonic functions in multiply connected 
regions. Here logarithmic terms are essential for the approxi­
mation of the most general harmonic functions, as we have 
seen, so we prove the following theorem. 
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Let C be a closed region bounded by Jordan curves Co, Ci, 
• • • , Cky such that no two of these curves have a common point 

and so that Ci, C2, • • • , Ck lie interior to Co. If the sequence 

rn(x,y) + -4m log [(x - xnl)
2 + (y - yni)

2] 

(13) + An2 log [(* - xn2y + (y- y^)2] 

+ • • • + Anklog [(x - XnkY + (y - ynk)2], 

( f i - 1 , 2 , . . . ) , 

converges uniformly in C, where rn{x, y) is a harmonic rational 
function of (xt y) with no singularities interior to C, and where 
the point (#nt-, yni) lies in or on C» and approaches a limit 
(xi,yi) as n becomes infinite,*then lim n-*<»Ani exists,i =1 ,2 , • • -, 
k, and each of the sequences 

(14) rn(x,y), Anilog [(x-xni)
2+(y-yni)

2], (i==l,2, • • • , * ) , 

converges uniformly in any closed region interior to C; if the 
functions in (14) have no singularity in C and no limit point of 
singularities in C, this convergence is uniform in the closed 
region C. 

The proof is simple; choose an analytic Jordan curve CI 
interior to C and enclosing d but none of the curves C\, 
C2, • • • , Ct_i, Ci+i, - - - , Ck in its interior. The sequence of 
the derivatives of (13) in the direction of the normal v to C/ 
converges uniformly on CI, and can be integrated on CI 
term by term [Osgood 1, pp. 652-653, Walsh l , p . 206]. I t 
follows from the theorem of Osgood already quoted that 

r drn(x,y) 
1 ds = 0 ; 

for we have 

Ç drn(x,y) r dsn(x,y) 
1 ds = I ds = 0, 

J Cif àv J a' ds 

* It is of course sufficient if the point (xt, y%) lies on or within C% without 
the assumption that (xni, yn%) lies interior to or on d\ we integrate (as 
below) over Cl when n is chosen so large that all points (xn%, yn%) but no 
points (xni, yni), i?6jf lie interior to C/ . 
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where sn(x, y) is a function conjugate to rn(x, y). The total 
result of the integration of the nth term of the sequence (13) 
is then precisely 4:irAni} so \imn+ooAni = Ai exists. I t follows 
that 

lim Analog [(x - xni)
2 + (y - yni)

2] 
n-*<*> r T 

= Ai\og[(x- * * ) 2 + ( y - y < ) 2 ] , 

uniformly in any closed region interior to C, and hence it 
follows that the sequence {rn(x, y)} converges uniformly as 
asserted. 

In the next theorem we shall not trouble to consider se­
quences so general as (13). 

Let C be a closed region bounded by Jordan curves Co, Ci, 
• • , Ck, such that no two of these curves have a common point 

and such that G, C2, • • • , C& lie interior to C0. A necessary 
and sufficient condition that the function u(x, y) defined in C 
should be harmonic in {the closed region) C, is that there should 
exist rational harmonic f unctions rn(x, y), real parts of rational 
functions of zof degrees (k + l)n,n = 0, 1,2, • • -, sothatwehave 

k 

(15) \u(x,y) — ^Ainlog [(x — Xi)2 

+ (y-yù2] - r » ( * , y ) ^ — > R>1, 
Rn 

for all points (x, y) of C; here the Ain are constants and the 
points (xi, yi) are supposed to lie interior to d respectively. 
It follows that lim w-oo Ain — Ai exists if (15) is satisfied. 

The sufficiency of this condition follows, as in the proof 
already given, from Osgood's theorem and from the corres­
ponding result for approximation of analytic functions of the 
complex variable [Walsh 4, Theorem V] . It is found by the 
integration that 

\Ain-Ai\SMf/Rn] 

hence (15) holds if Ain is replaced by Aif provided that M is 
replaced by a suitable M". The necessity of the condition 
is likewise easy to establish. The points (xiy yt) may be chosen 
arbitrarily interior to the curves Ci respectively. Then [com-
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pare Osgood 1, pp. 642-644; Walsh 1, p. 206] in C the 
function u{x, y) may be expressed as the sum of the k 
logarithmic terms which appear in (15) plus k f unctions har­
monic respectively on and exterior to d, and at infinity, 
for i = l, 2, • • • , k, plus a function harmonic in the closed 
interior to C0. The results of §4 can now be applied, and 
yield the desired rational functions rn(x, y). 

This theorem can be extended by considering (1) variable 
logarithmic terms, (2) more explicit regions or point sets for 
the location of the singularities of the functions rn(x} y)> (3) 
more explicit regions (that is, regions containing C in their 
interiors) for the harmonic character of u(x, y) and for the 
convergence of thesequence {rn(x,y)}, (4) more general bound­
aries for regions than Jordan curves. There is comparatively 
little difficulty involved in making any of these generaliza­
tions however, and the essential reasoning involved already 
appears in the literature (either here or elsewhere), so these 
generalizations are left to the reader. 

I t is also possible to study sequences of harmonic rational 
functions which satisfy such a relation as (15) not in a region 
but on a Jordan arc or curve. Here the situation is not so 
simple, as we have indicated in the analogous situation in §4. 
If (15) holds merely on the unit circle C, for instance, the 
sequence of harmonic rational functions need not converge 
elsewhere; for the function An log r vanishes on C and a 
change in An does not alter (15), yet may alter the conver­
gence off of C of the sequence in (15). The rational harmonic 
functions are not uniquely determined, moreover, by their 
values on C; the two functions rn cos nO and r~n cos nd are 
equal on C. Knowledge even of the location of the singular­
ities of a harmonic rational function (such as arn cos nd 
-\-br~n cos nd) and of the value on C does not determine the 
rational function uniquely. Nor is a function u(x, y) har­
monic in a region containing C in its interior determined by 
its values on C. 

If (15) holds on the unit circle C for rational functions 
{rn(x,y)} with singularities only at the origin and at infinity 
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and where (xi, yi), i = l, is the origin, there exists a function 
U(x, y) harmonic on C, in fact harmonic for r<R, and 
coinciding on C with the values u(x, y). Indeed, the logarith­
mic term of (15) vanishes on C and hence may be entirely 
omitted. The rational function rn(x, y) is a polynomial in 

r~~ncosnd, r~nsin #0, • • • , 1, cos0, sin0, • • • , rncosnd, rnsinnd, 

but the negative powers of r may be changed into positive 
powers without altering rn(x, y) or (15) on C, so we are dealing 
with a sequence of harmonic polynomials, converging like a 
geometric series on C. This situation has already been 
treated in §4, and the existence of the required function 
U(x, y) is established there. 

7. Expansions in Three Dimensions. The theory of the 
expansion of harmonic functions in three dimensions is not 
nearly so far developed as the corresponding theory in two 
dimensions, but we shall discuss a few results and a few open 
problems. 

I t is classic that Poisson's integral yields directly an expan­
sion of functions which are given harmonic interior to the 
sphere, continuous in the corresponding closed region. 

If the f unction u(x, y, z) is harmonic interior to a sphere and 
continuous in the corresponding closed region, then interior to 
the sphere u(x, y, z) can be expanded in a series of harmonic 
polynomials in (x, y, z), the series converging uniformly in any 
closed region interior to the sphere. 

This theorem will be used in proving the analog of the 
corollary (§2) to Runge's theorem. This analog has 
already been proved by Bergmann [ l ] , but only for the case 
of convex regions. The method we shall use is closely related 
to that of Bergmann, and both methods are intimately re­
lated to that of Runge. 

If the function u(x, y, z) is harmonic in a closed region S 
bounded by a simple closed {limited) surface, then in that 
closed region the f unction u(x, y, z) can be approximated uni-
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formly as closely as desired by a harmonic polynomial in 
(x,y,z). 

We shall find it convenient to have for reference the follow­
ing lemma. 

LEMMA. Let the two points (x0, y0, z0) and (V, y'y zf) and the 
simple polygonal curve C joining them lie exterior to the closed 
point set S. If the f unction u(x, y, z) can be uniformly approxi­
mated in S as closely as desired by a harmonic function whose 
only singularity lies in (x0, 3>o, s0), then this f unction u(x} y, z) 
can likewise be uniformly approximated in S as closely as 
desired by a harmonic function whose only singularity lies in 
(#', y', z') and which is rational except for the factor [(x — #')2 + 

(y-y'Y+(z-z'Y]-in. 
We give the proof of this lemma for the case that both 

(#0, 3>o, z0) and (V, y', z') are finite points, but that is simply a 
matter of convenience. The proof holds with only obvious 
changes even if (V, y', z') is the point at infinity,* and it is 
in this latter form that the lemma will be applied later. 
When (x', y', zr) is the point at infinity, the approximating 
functions are polynomials in (x, y, z)} and the factor [(x — x')2 

-\-(y — y')2-\-(z — z')2]~l/2 does not enter. 
Construct a finite sequence of spheres S0, Si, • • • , Sn ex­

tending from (x0, 3>o, So) to(#', y', z'), so that no sphere con­
tains in its interior a point of S, but so that successive spheres 
of the sequence have a region common to them. The point 
(#0, yo, Zo) shall lie interior to S0 and so shall another par­
ticular point (#i, 3/1, Zi) of C. The sphere Si shall contain 
(#1, yi, Zi) in its interior and likewise another particular 
point (x2l 3>2, z2) which lies on C between (xi, 3̂ 1, 21) and 
(x', y', zf). We proceed in this way to construct S2, S3 , • • • , 
iSn_i, finally arriving at the sphere Sn which contains in its 
interior (xn, yn, zn) and (#', y', z'). The construction of these 
spheres is surely possible, for it is no loss of generality to 
assume that C is composed of merely a finite number of line 

* It is to be remembered that vanishing at infinity is a necessary 
condition that a function should be harmonic there. 
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segments and has the length /. Assume likewise that the 
nearest distance from C to a point of S is 8. Choose the se­
quence of points Oo, yo, *o), (xi, yi, z{), • • • , (#», 3^, s»)> 
(#', y', z') on C such that the greatest distance between two 
successive points is less than 8/2. The sphere Si may be taken 
as the sphere with center (xi} y^ Zt) and diameter 8. 

Let an arbitrary positive e be given. We choose the har­
monic function TQ(X, y, z), whose only singularity lies in 
(#o, yo, Zo), such that we have 

i € 

u(x,y,z) — r0(x,y,z) < > (x,y,z) in S. 
1 n + 2 

This choice is possible by hypothesis. We next choose the 
harmonic function ri(xy y, z), whose only singularity lies in 
(xi,yi, Z\), rational except for the factor [{x — x±)2 + (y — yi)2 + 
(z — £i)2]~1/2, such that we have 

i i € 

(16) I r0(x,y,z) - rx(x,y,z) \< ——-, (x,y,z)mS. 
n + 2 

We prove by means of an inversion in the unit sphere whose 
center is (#i, yi, Zi) that such choice is possible: 

x - x1 y - yi z - Z! 
(17) £ = — , ^ = — , f = — , 

y^5 y£> yi 

1 
r2 = — = (x - xi)2 + (y - ^i)2 + (z - si)2. 

P'2 

The function p0(£, 77, ?) = ( l /p) fo (#, y, 2), where £, 77, f, a, 
3>, z are connected by the relations (17), is a harmonic 
function of (£, 77, f) on and within So', the transform of the 
sphere So under the inversion. Then by the theorem already 
stated, the function r'(£, 77, f), a polynomial in (£, 77, f), can 
be determined so that we have 

1 
—ro(x,y,z) - r'(É,i?,f) 
P (» + 2)d 

> (£>*7>f) interior toS 0 ' , 

where d is the distance from (#1, yu 21) to the farthest point of 
So . This inequality implies the inequality 
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I I € 

I ro(x9y,z) — pr'(Ç,r),Ç)\ < ; {oc,y,z) exterior to So. 
n + 2 

But (l/r)r'(t;, rjy f) is a harmonic function of (x, y, z), 
rational except for the factor \/r and with its only singularity 
in the point (xi, yi, z\)\ hence its equal pr'(£, 77, f) may be 
identified with the desired function ri(#, y, z) and yields (16). 

This same process can now be continued, and yields the 
additional inequalities 

1 1 e 

I fi(x,y,z) - r2 (x,y,z) < — - — > (*>y,z) in S , 
n + 2 

1 1 € 

I rn(x,y,z) — rn+i(x,y,z) \ < > (oc,yyz) in S. 

n + 2 

Hence we have finally 
I u(x,y,z) — rn+i(x,y,z) \ < e, (%,y,z) in 5 , 

where rw+i(#, y, 2) represents a harmonic function whose only 
singularity lies in (x', y', z') and is, except for the factor 
[(x-x'y+(y-y'y + (z-zfy]-11*, rational in (x, y, z). 
That is, the lemma is established. 

We need a second lemma in the proof. For the sake of 
simplicity we state and prove the lemma for integrals of a 
function of a single variable, but the proof holds without 
essential change for multiple integrals, and to double inte­
grals we shall apply the lemma. Likewise in the proof we 
consider merely a single parameter a, but no difficulty is intro­
duced by the appearance of several, and several parameters 
appear in the application we shall make. 

LEMMA. Let f(x, a) be a continuous real function of the 
arguments for a^x^b, ai^a^a2. If an arbitrary positive S 
be given, then there exists ö' so that the inequality 

I f(x,a)dx - ]£ƒ(&, a) (*< - ff*-i) ^5, 

a = XQ ^ Xi 5 | • • • ^ x„ = b, Xi-i ^ £» ^ Xi, 
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holds uniformly for all a, a i ^ a g c e 2 , provided merely that we 
have \xi — Xi-\\^b'. 

By the mean value theorem for integrals, we can write 

/•» b n 

I f(x,a)dx = ]C/(w>°0(ff* — Xir-i)} 

where Xi-i^rji^xiy and where rji depends on a. Let us choose 
5' so small that the inequality |f» — f/ | = 8' implies 

|/(f*,«) - ƒ 0 7 , « ) | Ûô/(b-o) 

uniformly for all a, a\ S OL ^ a2 ; such a ô' exists by the uniform 
continuity of f(x, a). Then under the hypothesis 
^ 5 ' , we have also |£ — rji\^ô', from which follows the 
inequality 

^lf(Vi,oi)(xi — Xir-i) — ^f(£i,a)(xi — Xi-i) £*, 

which is precisely (18). 
We are now in a position to prove the theorem. Denote 

by a a simple closed surface consisting entirely of a finite 
number of portions of planes parallel to the coordinate planes, 
which contains S in its interior, and on and within which the 
given function u(x, y, z) is harmonic. The value of u(x, y, z) 
in S is given by Green's integral 

(19) u(x,y,z) 
AwJaJ 

(I) 1 du 
u 

r dn dn 

da, 

where n represents the exterior normal. Let an arbitrary 
positive € be given. We divide a into a finite number n of 
pieces d, so that each piece consists only of a portion of a 
plane parallel to one of the coordinate planes, so that each 
piece <Ti lies interior to a sphere Si which contains on or within 
it no point of 5, and so that we have 
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[47T 

\ 1 C r 1 du 1 * 1 / du\ I € 
— da E —( — )àia\ ^— , 

\4wJoJ r dn 4ic i=x ri\dn/i | 4 
(20) (*,y,«) in 5 , 

l r r a(l /f) 1 » p ( l / O l A I ^ e 

yJffJ dn 4TT M L dn Ji \ 4 
(x,y,z) in 5 , 

where r< is the distance from (x, y, z) to a particular but 
arbitrary point Pi of <rt-, where (du/dn)i is the normal deriva­
tive of ^(x, y, z) aX Pt-, where Ato- is the area of a-*, where uM the 
value of ^(#, y, z) at Pt-, and where [d(l/r)/dn]i is the value 
of d(l/r)/dn a t P; . The last expression may also be written 
as the value at P t of a partial derivative of l/r with respect 
not to (x, y, z) but to running coordinates on <r, and this latter 
form serves better to indicate that we are dealing with a 
harmonic function of (#, y, z). 

Each term of the sums in (20) is a function of (x> y, z) har­
monic not merely in the closed region 5 but throughout the 
exterior of the corresponding sphere Si, even at infinity. I t is 
immediately seen by inversion with Pi as center of inversion 
that in the (x, y, z)-space each of these terms can be approxi­
mated by a harmonic function of (x, y, z) whose only singu­
larity lies in Pi and which is rational except for the factor l/rt-, 
where Yi indicates distance measured from P*. The approxi­
mation can be made uniformly as closely as desired in the 
exterior of the sphere Si, and hence uniformly as closely as 
desired in the closed region S. But each point P» can be 
joined to the point at infinity by a Jordan curve which does 
not meet S. Then by the first lemma we can approximate 
each term of the sums in (20) as closely as desired uniformly 
in the closed region S by a harmonic polynomial in (x, y, z). 
That is, we can determine harmonic polynomials pi(x, y, z) 
and piix, y, z) such that we have 

(21) 

1 » 1 / du\ 
— 2s — I — ) A ^ ~ Pi(*,y, 
47T 1=1 fi \dn/i 

1 » / d(l/r) \ 
— 2J*i I — — ) A ^ - M*>3S») 
4TT t„i \ dn /i 

€ 

^ — > (*,y,*) i n S , 
4 

— , ( x , y 9 z )mS . 
4 

file:///4wJoJ
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I t follows immediately that we have 

(22) \u(x,y,z)- [pi(x,y,z) - p2(x,y,z)]\£e9(x,y}z)mS, 

and the theorem is proved. 
The present proof has the advantage over the proof of §2 of 

holding (with only minor modifications) in two, three, or n 
dimensions, and since it does not involve the theory of 
functions of a complex variable, has the additional advantage 
of being more satisfactory from the standpoint of the purist. 
This remark applies also to the results which immediately 
follow. 

Another remark is of interest. If the point (x, y, z) is 
exterior to the closed surface <r, the integral (19) has the 
value zero, where r still indicates distance from (x, y} z) to an 
arbitrary point of cr. Indeed it is a general theorem that if 
the functions u and v are both harmonic on and within <r, 
then we have 

ƒ„ƒ[ 
du dvl 

v u — \d<r = 0. 
dn dnj 

Thus if the function u(x, y, z) is given harmonic on a point 
set 5 composed of the closed interiors of two non-intersecting 
simple closed surfaces, two new non-intersecting simple 
closed surfaces cri and o-2 can be constructed which consist 
entirely of a finite number of portions of planes parallel to 
the coordinate planes, such that each point of S lies interior 
either to <xi or a2l and such that u(x, y, z) is harmonic on and 
within both <n and <r2. Then formulas (19), (20), (21), (22) 
are valid without any change whatever, if we set <r = <ri+0"2. 
A similar fact holds if S falls into n distinct parts. In fact we 
can prove the following theorem. 

Let S be an arbitrary closed limited point set whose comple­
mentary set {with respect to the entire space) is connected. Then 
if u(x, y, z) is harmonic on S, the f unction u{x, y, z) can be 
uniformly approximated on S as closely as desired by a harmonic 
polynomial in (x, y, z). 

There exists a point set a consisting of a finite number of 
mutually exclusive closed limited simply-connected regions 
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cri, 0*2, • • • , o*»» containing all points of S in their interiors, 
the individual regions bounded entirely by a finite number of 
portions of planes parallel to the coordinate planes, and such 
that u(x, y, z) is harmonic on the entire set o ,i+o ,2+ • • • 
+<rn. The previous method applies without change and the 
theorem follows. 

The following application corresponds to the theorem of 
Runge; the proof is omitted. 

Let C be a point set composed of a finite or infinite number of 
mutually exclusive simply-connected regions, none of which con­
tains the point at infinity in its interior. If the function 
u(x, y, z) is harmonic interior to each of these regions, then 
u{x, y, z) can be expanded on C in a series of harmonic poly­
nomials in (x, y, z), and the series converges uniformly on any 
closed point set contained in C. 

We add one further result on general approximation. A 
closed region S is said to be convex with respect to the interior 
point P if 5 is bounded by a surface which is cut in a single 
point by each ray through P. A region which is convex in the 
usual sense of the word is convex with respect to each of its 
interior points. 

If the region S is a limited closed region convex with respect 
to some interior point P, then an arbitrary f unction u (x, y, z), 
harmonic interior to S and continuous in the closed region, can 
be approximated as closely as desired uniformly in the closed 
region S by a harmonic polynomial in (x, y, z). 

Choose P as origin of coordinates, which involves no loss of 
generality, and consider the transformation 

x' = px, y' = py, z' = p2, p > 1, 

which transforms S into a region S' which contains S in its 
interior. The function u(x, y, z) is transformed into a new 
function 

( x y z\ 
—, —, — j 
P P P / 

defined throughout S'. I t follows from the uniform contin-
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uity of u(x, y, z) in S that if e > 0 be given, then p can be cho­
sen so near to unity that we have 

I uf(xyy,z) — u(x,y,z) | < —; (xyy,z) in 5 . 

For #'(#, j , z)—u(x, y, z) is the same as u(x/p, y/p, z/p) 
— u(x, y y z), which becomes uniformly small with p — 1. The 
function w'(*> j , JS) is harmonic in the closed region 5, so 
there exists a harmonic polynomial p(x, y, z) such that we 
have 

i i 6 

I u'(x,y,z) - p(x,y,z) \ < —> (%,y,z) in 5 , 

whence follows 

I u(x,y,z) - p(x9y,z) \ < e, (*,y,z) in 5 , 

and the theorem is established.* 
I t will be noticed that the study of the approximation to an 

arbitrary function in the plane is fairly well developed, while 
for space the study is only begun. In particular the general 
question as to when a function harmonic interior to a three-
dimensional region and continuous in the closed region (or 
more generally, defined on a given closed point set) can be 
uniformly approximated in that closed region (or on that 
point set) as closely as desired by a harmonic polynomial, 
seems to be well worth investigating. There is an essential 
difference in methods and results for two and for three 
dimensions, for in the latter case the Dirichlet problem does 
not always have a solution, even for simply-connected 
regions. Methods of solution of the problem of approxima­
tion in three dimensions would presumably depend on the 
study of the solution of the Dirichlet problem for variable 
regions, and the result would presumably depend to some 
extent on whether the region is normal [compare Kellogg, 1]. 

* The corresponding theorem for analytic functions of a complex 
variable was given independently by Hilb and Szâsz, Encyklopâdie der 
mathematischen Wissenschaften, vol. 2, C, II , p. 1276, and by Walsh, 
Transactions of this Society, vol. 26 (1924), pp. 155-170; p . 168, footnote. 
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We mention other problems for three or more dimensions : 
the study of harmonic polynomials belonging to a general 
region*, the degree of approximation to functions by harmonic 
polynomials, the question of interpolation by harmonic poly­
nomials, approximation by harmonic rational functions,—the 
solution of all of these problems still lies in the future. 
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