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THE HEROIC AGE OF GEOMETRY* 
BY J. L. COOLIDGE 

The remarks which I shall have the honor to make today 
are addressed primarily, if not exclusively, to the older 
generation. The prophet Joel describes the golden age to 
come by saying "Your old men shall dream dreams, and 
your young men shall see visions." That distinction is 
eternally valid. Youth has visions of the future. Age dreams 
of the past. Our younger members are facing forward, look­
ing towards the splendid mathematical discoveries that will 
be made during the coming decades, among which will be 
included those which they themselves will have made. It 
stirs the blood and fortifies the courage to feel that one is 
called upon to contribute in this way to the advancement of 
science, and that a grateful posterity will recognize what one 
has done. If the present passion for materialism continues, 
the number of contributions to mathematical science in the 
next hundred years may not greatly exceed half a million. 
Go on, oh younger generation, happy in the thought that the 
mathematicians of a century hence will, by an unfailing in­
stinct, pick out your own particular contributions from all 
the rest! 

For you who, like myself, belong to the generation that 
is passing, who have reached the age to dream dreams, I 
propose a humbler task. I propose that we look backward. 
The most notable epoch in all the long history of geometry, the 
heroic age, was almost exactly a hundred years ago. I t was 
the moment when geometric supremacy was passing from 
France to Germany, a fact which the French geometers were 
slow to recognize, for Chasles, in his Aperçu historique 
des méthodes en géométrie, regretted that he could not 

* An address read by invitation of the program committee before the 
Society, and the Mathematical Association of America, December 28,1928. 
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speak of the work of the German geometers because he could 
not read their language. I shall try to show you some of the 
problems which interested the geometers of that time, and 
the methods chosen for their solution. I shall try to point 
out what was most significant in their work, and what was 
their influence on the progress of science. 

Karl Wilhelm Feuerbach was born in 1800, contemporary 
with Macaulay and von Moltke, and died in 1834, professor 
at the gymnasium in Erlangen. In 1822, he published 
in Ntirnberg a pamphlet entitled Eigenschaften einiger 
merkwurdigen Punkte des geradlinigen Dreiecks. The original 
of this, which may have been his doctor's dissertation, 
is hard to find, but a reprint appeared in 1908. The writer 
is concerned with the geometry of the triangle. When he 
finds two notable points he determines their distance, 
when there are three he determines the center and ra­
dius of the circumscribed circle. The methods are entirely 
elementary. The inscribed and escribed circles seem to 
attract him particularly, and finally he proves, quite casually, 
on page 48, that the circle through the feet of the altitudes 
passes through the middle points of the sides, and is tangent 
to the inscribed and escribed circles. This is the first known 
proof of the nine-point or Feuerbach circle theorem, though 
the author himself missed three of the nine points. Previous 
writers had found the center and radius of the circle, Bevan 
giving their determination as a problem in 1804.* The exis­
tence of nine points thereon was discovered in 1821 by 
Brianchon and Poncelet.f It is no disparagement to Feuer­
bach that he did not see Bevan's article which appeared in 
an obscure English journal, while the work of the French 
writers may well have appeared after his own had gone to 
press. 

The fate of his theorem was that of many another;J 

* Leybourn's Mathematical Repository, vol. 1, p. 18. 
t Gergonne's Annales de Mathématiques, vol. 11, p. 215. 
t See Macaulay, History of the nine-point circle, Proceedings of the 

Edinburgh Mathematical Society, vol. 11 (1892). 
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first it was overlooked, then rediscovered. Steiner announced 
it without proof in 1828* and found the remaining three 
points in 1833.f Next Terquem proved it completely in 
1842.| Salmon proved the tangency part in 1860 as did 
Casey, § although they called the circle merely a six-point 
circle. Since that time there has been a perfect cloudburst of 
demonstrations. It has been said that the study of the 
philosophy of Kant has risen almost to the rank of one of 
the liberal professions ; the same is measurably true of proving 
Feuerbach's theorem. The last adept would seem to be 
Sawayama, who gave nine demonstrations, all presumably 
new, in 1911.|| Perhaps there is an element of absurdity in 
all this, but can we deny that we owe to Feuerbach the most 
beautiful theorem in elementary geometry that has been 
discovered since the time of Euclid? 

Steiner's important contributions to elementary geometry 
during the period that we are considering were by no means 
limited to proving the Feuerbach theorem. He brought out 
and developed several of the most important principles con­
nected with the modern geometry of the circle, notably^ the 
idea of the power of a point with regard to a circle, the centers 
of similitude and radical axes. These ideas, though perhaps 
new to Steiner were not strictly speaking new to geometry, 
as they had already been presented by Gaultier,** Durandeft 
and Poncelet.îî But Steiner handled his methods with con­
summate skill; witness his beautiful solution of Malfatti's 
problem to construct three circles, each tangent to two sides 
of a triangle, and to the other two circles, which he gave 

* See his Collected Works, Berlin, 1881, pp. 195, 196. 
t Ibid., p. 491, Note. 
J Nouvelles Annales de Mathématiques, vol. 1, p. 197. 
§ Quarterly Journal of Mathematics, vol. 4, p. 153. 
|| L'Enseignement Mathématique, vol. 13 (1911). 
H Einige geometrische Betrachtungen, Journal für Mathematik, vol. 1 

(1826). 
** Journal de l'École Polytecnique, vol. 9 (1813). 
ft Annales de Mathématiques, vol. 11 (1820). 
%% Propriétés Projectives des Figures, Paris, 1822. 
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without proof, and for which no simple proof was published 
till that of Hart thirty years later.* Moreover, his proof of 
the Feuerbach theorem was contained in a paper which was 
important in another way, for it deals with constructions 
possible with the aid of a ruler and one circle fully drawn 
and with given center. This is not, of course, the first 
attempt to replace the Platonic instruments, ruler and com­
pass. There were, for a long time, two opposing tendencies, 
one to extend the list of permissible instruments, the other 
to restrict it. In the latter category we might mention the 
idea of using a compass with fixed opening, which goes back 
to Abul Waf a in the 10th century f or the really astonishing 
work of Mascheroni in proving that every determination 
of a point that is possible with ruler and compass, is also 
possible with the compass alone. J The idea of using a 
ruler and given circle was first broached by Poncelet,§ but 
was carried through independently and in far greater detail 
by Steiner. 

While in France and Germany distinguished mathe­
maticians were doing their best to build up the ancient science 
of geometry, further East others were equally zealous in 
what must have seemed uncommonly like an effort to tear 
it down. The period we are considering included the birth 
of the non-euclidean geometry, at present a perfectly re­
spectable branch of mathematics, but a heretical doctrine 
one hundred years ago. The "fons et origo" was skepticism 
about Euclid's twelfth postulate, that dealing with parallels. 
Candid persons had felt for a long time that this was not 
really as self evident as a reputable axiom ought to be, and 
countless attempts had been made to prove it. Now one of 
the classical methods of procedure in mathematics is the 
reductio ad absurdum, and quite naturally it occurred to 
those who were trying to prove this axiom, to see what would 

* Quarterly Journal of Mathematics, vol. 1 (1855). 
t See Tropfke, Journal Asiatique, (5), vol. 5 (1855), p. 226. 
t Geometria del Compaso, 1797. 
§ Propriétés Projectives des Figures, 1822, pp. 187-189. 
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happen if they replaced it by some other assumption about 
parallels. This was first tried by Saccheri at the middle of 
the 18th century, and many others after him. In each case 
things went well until the writer slid into some unwarrantable 
assumption in order to show that he was in difficulties when 
he wasn't. I t took six decades from the time of Saccheri, 
and the genius of Gauss, to see that the parallel axiom was 
really independent of the others. But Gauss was busy with 
other matters and did not take the trouble to publish his 
results, so that the credit for first publicly announcing the 
non-euclidean geometry goes to a Russian, Lobachevski, 
who, on February 12, 1826, read before the Physico-Mathe-
matical Society of Kasan a paper entitled Exposition succincte 
des principes de la géométrie* No trace of the manuscript 
of this address has ever been found, but we know from 
Lobachevski's later writings what must have been included 
therein. I t is also permissible to doubt that it deserved the 
adjective succinct. His Russian article on the Principles of 
geometry, which appeared in the Kasanskij Wjestnik, the 
Kasan News in 1829-30, purports to be an extract from the 
previous paper, and covers 66 pages. I t is very incomplete, 
and we only get to the root of Lobachevski's ideas by study­
ing his subsequent publications. 

Let us hasten to bracket with Lobachevski, the inde­
pendent discoverer Johann Bolyai, whose Appendix, Scien-
tiam Absolute Veram Spatii Exhibens was attached to his 
father Wolfgang's Tentamen Juventutem Studiosam in Ele-
menta Matheseos . . . . Introducendi, which was published at 
Maros Vasarhely in 1832. 

The truly startling thing about these two works is their 
similarity. It is not to be wondered at that, when Bolyai 
first saw Lobachevski's work in 1835, he made the natural 
mistake of believing that it was copied from his own.f We 
have learnt in a hundred years that there are a good many 

* For an account of Lobachevski, see Engel, Lobatschefskij, Leipzig, 
1898. 

t See Stâckel, Wolfgang and Johann Bolyai, Leipzig, 1913, pp. 140 ff. 
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different ways of setting to work to establish the non-
euclidean geometries. Kipling has written somewhere: 

"There are nine and sixty ways, of constructing tribal lays, 
And every single one of them is right." 

It is much the same in constructing non-euclidean geome­
tries. It is therefore really astonishing, that Lobachevski 
and Bolyai showed the following similarities : 

1. Both defined parallel lines as the limiting positions of 
intersecting ones. 

2. Both reached at a bound the hyperbolic geometry, over­
looking completely the possibility of an elliptic geometry, 
where there were no parallels. 

3. Both introduced at an early stage the horosphere, 
which is the surface orthogonal to a bundle of parallel lines, 
bringing out the remarkable fact that on this surface we 
have the euclidean geometry. 

4. Both pointed out that the formulas of spherical trig­
onometry could be established without the parallel axiom. 

5. Both studied the ratio of the non-parallel sides of a 
quadrilateral, two of whose sides are equal and parallel. 

Of course there are divergences as well as similarities in 
the writings of the two. Lobachevski made continual use of 
the parallel angle associated with a given distance, that is, 
the angle which the parallel to a given line, through a point 
at a given distance from that line, makes with the normal. 
Bolyai manipulated skillfully his theorem that the ratio of 
the sines of two angles of a triangle is that of the circum­
ferences on the opposite sides as diameters. Lobachevski is 
more prolix, and especially interested in trigonometric formu­
las, Bolyai is brief, but he brings out the function of the space 
constant in admirable fashion. My own final impression is 
that the points of similarity are far more remarkable than 
those of difference. 

It was many years before the significance of non-euclidean 
geometries was fully understood, and developed beyond the 
point reached by the discoverers. It was only in 1854 that 
the third classical geometry, the elliptic geometry of Riemann 
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was first exhibited.* Skepticism lingered; in order to con­
vince the average man, or the average mathematician, it 
was necessary to see the non-euclidean geometry at work. 
A sphere, or rather a hemisphere where opposite points of 
the equator count as identical, gives a very good elliptic 
plane; a beautiful specimen of a Lobachevskian plane, or 
rather of a part of one, was found by Beltrami in a surface of 
constant negative curvature, f These examples did not go 
beyond two dimensions. Klein seized on the theory of pro­
jective measurement, casually thrown out by Cayleyî to 
give a perfect example of Lobachevskian or Riemannian 
geometry in as many dimensions as may be desired. Lie's 
theory of continuous groups threw a new and valuable light 
on the questions involved ; contributions came in from various 
quarters. Since the beginning of the present century the 
subject has been somewhat transcended, owing to the newer 
methods of differential geometry, and the theory of rela­
tivity. Of the various methods of attack, that of Riemann 
based on the study of quadratic differential forms has shown 
itself best able to meet the new demands. But we owe an 
enormous debt to Lobachevski and Bolyai, not only for 
enriching geometry, but for initiating a movement which 
has been of incalculable importance to philosophy. Our 
whole modern conception of mathematics as a logical system 
based on arbitrary axioms may be traced back to their 
pioneer work. 

We have had occasion already to speak of Steiner once or 
twice; we have not yet said a word about his most important 
work, Systematische Entwickelung der Abhangigkeit geome-
trischer Gestalten von einandery\ one of the corner stones on 

* Ueber die Hypothesen welche der Geometrie zur Grande liegen. See his 
Collected Works. 2d éd., Leipzig, 1892, pp. 272 ff. 

t Saggio di interpretazione delta geometria non-euclidea, Giornale di 
Matematiche, vol. 6 (1868). 

t Klein, Ueber die sogenannte Nicht-Euklidische Geometrie, Mathe­
matische Annalen, vol. 4 (1871); Cayley, Sixth Memoir on Quantics, Philo­
sophical Transactions, vol. 149 (1859). 

§ Berlin, 1832. See his Collected Works, vol. 1. 
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which the whole subject of synthetic projective geometry 
rests. Who were the predecessors, from whom, presumably, 
Steiner drew inspiration? They were certainly French. 
Among the earlier writers there were, of course, Pascal, 
Desargues and Brianchon. Then Carnot, although preceding 
the modern movement, exercised considerable influence 
through his Géométrie de Position,* especially through his 
theory of transversals. More important by far was Poncelet, 
whose Propriétés Projectives des Figures, composed in a 
Russian prison in 1813, first saw the light in 1822. Poncelet's 
root idea may be stated about as follows. A geometric 
figure may be wonderfully simplified by a central projection 
from plane to plane, or by a homology in plane or in space. 
What are the properties of figures which are invariant under 
such a transformation, how can theorems about the simpli­
fied figures be stated in invariant terms so as to give proper­
ties of the original figures? We see at once that the essentials 
consist in concurrence, collinearity, coplanarity and cross 
ratios. Poncelet also introduced a rather cumbrous system 
of what he called "ideal chords" determined not by the 
given curve, but by another, to get rid of imaginary inter­
sections. Finally he laid stress on the method of polar 
reciprocation with regard to a conic or quadric to establish 
the principle of duality. This last principle was a good deal 
talked about at the time; a long and not very edifying 
dispute between Gergonne and Poncelet as to priority of 
discovery is spread over the pages of the Annales de Mathé­
matiques, f The former conceived duality in a broader spirit 
as an inherent characteristic of geometric figures, but did 
not follow this important idea very far; the latter did not 
much believe in any duality he did not see, so he created it 
by polarization. 

All of these threads were drawn together by Steiner in 
his development of projective geometry, which is nothing 
if not "systematisch." He starts with a point, the points 

* Paris, 1803. 
t Volume 18 (1827-28). 
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of a line, and those of a plane. The plane is the simplest 
two-dimensional locus of points, the point the simplest two-
dimensional envelop of planes, the line is the simplest one-
dimensional figure of points or planes, the pencil of lines is 
a self-dual figure. The principle of duality appears at the 
very start, and a good part of the work is printed in double 
columns. Cross ratios of points, lines and planes are then 
defined, and it is shown how they are unaltered by projec­
tions and intersections. Steiner talks a good deal about 
"projective forms" but the definition is rather mixed with 
theorems about them. The underlying thought is that they 
are one-dimensional forms whose elements are in one-to-one 
correspondence, with equality of corresponding cross ratios. 
Steiner shows easily enough that two forms which are con­
nected by a finite number of projections and intersections 
are projective in this sense; his proof of the converse is faulty 
owing to his inability to handle the question of the continuity 
of the projective relation. Starting with these data, Steiner 
obtains all the other figures he wants to study by construc­
tion; a conic is given by the intersections of corresponding 
lines in two projective pencils, and enveloped by lines con­
necting corresponding points in two projective ranges. 

Every modern student of projective geometry will see 
that the fundamental ideas of his science are here set out in 
order. Steiner laid a very solid foundation whereon his suc­
cessors might build. I t is true that the Latin school of geo­
meters, including such mathematicians as Chasles and 
Cremona, drew their inspiration more from Poncelet than 
from Steiner, but the latter had a notable lineal descendant 
in von Staudt. This profound thinker perceived two flaws 
in the perfection of the Steinerian structure. In the first 
place, although cross ratios are projectively invariant, their 
original definition is metrical; secondly, there is no satis­
factory treatment of imaginary elements. These defects he 
set out to remedy in heroic fashion.* Each set of four ele-

* See his Geometrie der Lage, 1847, and Beitrage zur Geometrie der Lage* 
1856-1860. 
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ments of a fundamental one-dimensional form he calls a 
"throw" and associates with a number; four harmonic ele­
ments, in right order, are associated with the number — 1. 
He then defines the sum and the difference of two throws, 
and shows how a throw can be found corresponding to every 
rational number. At that point he was blocked as he had 
no means of handling irrational throws, no Dedekind cut. 
The lack was later filled by Klein.* Von Staudt's other 
highly original idea was to define an imaginary point as an 
elliptic involution of points, to which a sense of description 
has been attached. He showed how projective geometry, 
enlarged by these new elements, followed the old laws and 
permitted the old constructions. His culmination is the treat­
ment of a complex throw. 

The synthetic geometry of Poncelet and Steiner was 
vigorously pursued for a century, the last heroic figure 
being that of Reye. In recent years we have tended to ques­
tion the wisdom of too sharp a separation between synthetic 
and analytic methods, and to confine our researches either 
to tinkering with the fundamental assumptions, or to the 
field of projective differential geometry. But the synthetic 
methods have a compelling charm when rightly presented, 
and afford a most admirable training for every geometer, 
wherever his specialty may lie. 

The great progress of synthetic geometry in the years we 
have been considering was, fortunately, not at the expense of 
analytic geometry; on the contrary, the rivalry between 
the two was of great value to mathematical science. The 
progress of algebraic methods kept pace with that of the 
synthetic ones; strangely enough the first writer we must 
mention in this new connection is our previous acquaintance, 
Karl Wilhelm Feuerbach. In 1827 we find him publishing 
his Grundriss zur analytischen Untersuchung der dreiecki-
gen Pyramide. His object here is analogous to that previously 
pursued in the study of the triangle, to establish relations 

* Mathematische Annalen, vol. 7. 
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between the distances between the notable points of the 
pyramid. But he now passes from synthetic to analytic 
methods, and consequently arrives at very different theorems 
from those reached before. To begin with, and most im­
portant, he sets up a novel set of coordinates. He has the 
idea of linear dependence firmly fixed in his mind. Suppose 
that the coordinates of a variable point are expressed as 
linear combinations of those of four fixed non-coplanar 
points 

X - ax + bxf + ex" + dx'"} 

Y - ay + by1 + cy" + dy'", 

Z - az + bz' + cz" + dz"', 

1 = a + b + c + d. 
The quantities a, &, c, d connected by the last identity may 
be taken as a new system of coordinates. They may be 
interpreted as the distances to the four faces of a tetraedron, 
with right algebraic signs, divided by the corresponding 
altitudes. A linear equation among them will give a plane. 
Feuerbach has an additional tool in an identity which he 
attributes to Lagrange, but which I am ashamed to say I 
have not been able to find in his writings. If -4, J5, C, D, 
and E be five points in space, their distances are connected 
by the relation 

0 

BA2 

CA2 

DA2 

EAi 

1 

AB* 

0 

CB* 

DB* 

EBi 

1 

AC2 

BC* 

0 

DC2 

EC2 

1 
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BD2 

CD2 

0 

ED2 

1 

AE2 

BE2 

CE2 

DE2 

0 

1 

1 

1 

1 

1 

1 

0 

He proves a good many theorems with the aid of his new 
tools; some are interesting, others unimportant. Perhaps 
his most notable result is to give in very simple form the 
equation of a sphere tangent to four given spheres. It must 
not be forgotten that Feuerbach never heard of a deter­
minant. 
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If we must give Feuerbach full credit for the independent 
discovery of one form of tetrahedral coordinates, we must 
hasten to point out that he was not the only discoverer. A 
more important mathematician than he made the same dis­
covery in the same year, August Ferdinand Möbius.* The 
idea of this able geometer was to base geometric theorems 
on the properties of the center of gravity of a system of 
points. If two points be given, any point of their line will 
be the center of gravity of the two, provided they be endowed 
with proper masses, positive or negative. These masses 
are taken as homogeneous coordinates for the point. Two 
masses whose sum is zero are made to correspond to the 
infinite point of the line. A similar definition, when three 
non-collinear points are given, will give the homogeneous 
coordinates of a point in their place while four non-coplanar 
points will yield the homogeneous barycentric coordinates 
of a point in space, exactly proportional to the coordinates 
of Feuerbach. In representing a straight line, Möbius uses 
linear dependence on two points thereof, while a plane is 
given by linear dependence on three. This parametric 
method yields, of course, the simplest means of handling 
linear problems. When it comes to studying a curve, in 
piano or in spatio, Möbius represents the coordinates of â 
point thereof as rational functions of a given parameter, 
while two parameters are used for a surface. As the coordi­
nates used are homogeneous, he replaces rational functions 
by polynomials, whose degree gives the degree of the curve 
or surface. He knew too much to imagine that all algebraic 
curves and surfaces could be expressed in this way, but he 
confined himself to rational varieties, and in particular to 
quadratic ones. A notable feature is that he has a clear grasp 
on the fundamental idea of an invariant, that is to say, a 
property of a geometric figure which is unaltered by the trans­
formations of a certain group. He studies successively motions 
which keep distances unaltered, affine transformations where 

* Der barycentrische Calcul, Leipzig, 1827. 
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areas or volumes are altered in a fixed ratio, and collineations 
which he defines as transformations which carry collinear or 
coplanar points into collinear or coplanar ones. His fundamen­
tal relations here are the cross ratios of four collinear points, 
triangle ratios involving six coplanar ones, and tetrahedral 
ratios involving eight non-coplanar ones. If four points of a 
plane, no three collinear, be invariant for a collineation, 
all points of their net of rationality are invariant. Möbius 
assumes that the transformation must therefore be the iden­
tity. He expresses a collineation by a linear transformation 
of his homogeneous barycentric coordinates; he grasps the 
principle of duality both in the form of Gergonne, and that 
of Poncelet. 

I t would be a mistake to imagine that Möbius' contri­
butions to geometry were limited to the publications of the 
Barycentrischer Calcul, and contemporary articles dealing 
with the same subject. We are indebted to him for the dis­
covery of the null system in space, and a geometric theory of 
circle transformations in the plane which is useful in the 
study of the simplest functions of a complex variable. The 
form of the Barycentrischer Calcul is not exactly that which 
we should choose today, but the wealth of fruitful ideas is 
remarkable. 

I t would certainly seem that Feuerbach and Möbius 
were enough to share the credit for discovering tetrahedral or 
trilinear coordinates; but such is not the case. Omitting 
independent discoveries of a somewhat later date, we must 
now render full credit to Julius Plücker for his work of 1828.* 
He started out with the deliberate intention of showing that 
all of the beautiful results which Poncelet and Steiner had 
reached by synthetic methods were easily obtained by alge­
braic analysis. His interest in trilinear coordinates was 
much less than that of the previous writers mentioned; they 
appeared to him merely as a sort of abridged notation. Thus 
if A and A ' be the expressions for the distances of a point 

* Analytisch-geometrische Entwickelungen, vol. 1, 1828; vol. 2, 1832. 
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from two given lines, the equations -4=0, -4' = 0 and 
A+vA' = 0 will represent respectively the first line, the 
second line or an arbitrary line through their intersection. 
An almost identical point of view was contemporarily, 
though doubtless independently, expressed by Bobilier,* to 
whom we owe also the equation of the first polar of a point 
with regard to a given curve, f This idea of using a single 
letter to replace a whole polynomial gave Pliicker an easy 
method of proving not only straight line theorems, but a 
number of beautiful properties of circles that had been found 
synthetically by the French geometers. When it comes to 
conic sections, he uses Cartesian coordinates, in his first 
volume, giving a good deal of attention to change of axes, 
and polar reciprocation. 

Between writing the first and the second volume, Pliicker 
became very much impressed with the idea of duality, so 
that Volume 2 is entirely given to line geometry in a plane. 
The coefficients of a line are the ratios of the coefficients in 
its equation when expressed in terms of homogeneous Car­
tesian point coordinates. A large part of the book is given 
to curves of the second class. The domain is real, so that 
an ellipse can be defined as a curve of the second class which 
has a tangent pointing in every direction. The volume, like 
its pre ecessor, ends with polar reciprocation. 

One has the impression, on the whole, that Plücker's work 
at this moment was less original than that of Möbius, 
though easier to read, and yielding more results. It is also 
to be remembered that his greatest contributions to alge­
braic geometry came later. We owe to him the coordinates 
of a line in space, which, in the perfected form devised by 
Klein, are highly important in that branch of science vaguely 
called "Higher Geometry." We are also indebted to Pliicker 
for the beautiful identities connecting the numbers of point 
and line singularities of an algebraic plane curve. Let us 
mention in passing, that we do not surely know to this day 

* Annales de Mathématiques, vol. 18 (1827-28). 
t Ibid., vol. 19 (1828-29), p. 108. 
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when a set of solutions of these equations in positive integers 
necessarily corresponds to an existing curve. 

It would certainly seem that with the names of such 
geometers as Poncelet, Steiner, Möbius, and Plücker, we 
might close the list of those who contributed to geometric 
science in the second period just one hundred years ago; it 
would seem so, and we should be justified, were it not for the 
the fact that there lived in the small but important town of 
Göttingen, a man by the name of Johann Carl Friedrich 
Gauss who published his Disquisitiones Generales circa Super­
ficies Curvas in 1827.* This work is not only the firm basis 
on which all the mass of subsequently discovered differential 
geometry rests, but is also the most important individual 
contribution ever made to that branch of mathematical 
science. 

What were the most novel and fruitful ideas contained 
in Gauss* geometric work? To begin with, and most im­
portant, Gauss was the first writer to make consistent use 
of the method of parametric representation of a surface, 
that is to say, the method of expressing the Cartesian coordi­
nates of the points of a surface as functions of two indepen­
dent variables. The idea was not absolutely new. Euler 
used it in approaching the general problem of the appli­
cability of one surface to another, his exact words being :f 

"Et quia per naturam superficiarum quaelibet coordinata 
debet esse functio binarum variabilium a se invicem non 
penden tes." Unfortunately this important idea did not 
bear immediate fruit. There was much interest in differential 
geometry at the beginning of the nineteenth century, especi­
ally on the part of the French mathematicians. Writers 
like Monge and Dupin who made really important contri­
butions, regularly expressed z as a function of x and y, 
Cauchy equated a function of the three variables to zero. 

* Commentationes Societatis regiae Gottingensis, vol. 6 (1828); vol-
his Collected Works, vol. 4, Göttingen, 1873. An English translation with 
notes by Thompson was published in Princeton, N. J., 1902. 

t Leonardi Euleri Opera Posthuma, vol. 1, St. Petersburg, 1862, p. 494. 
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The superiority of the Euler-Gauss method is so evident 
that it "jumps to the eyes." The modern developments of 
differential geometry would never have been possible without 
it. Gauss first states it in his Theoria Attractionis of 1813.* 
He uses it also in his prize memoir presented to the Scientific 
Society of Copenhagen in 1822,f but it is in the Disquisi-
tiones that it is first convincingly set forth. 

A second important feature of Gauss' treatment is the 
use made of spherical representation. Gauss considers not 
one surface but two. Previous writers paid attention to the 
direction cosines of the normals; Gauss treats these as the 
Cartesian coordinates of a point on an auxiliary sphere. 
The beauty of the conception can be seen in the following 
way. In the plane we may associate with each curve a circle 
of unit radius whose points correspond to the oriented nor­
mals of unit length of the given curve. The curvature is 
the ratio of the lengths of corresponding infinitesimal arcs 
of circle and curve. In the same way the total curvature of 
a surface is the ratio of corresponding infinitesimal surface 
elements on sphere and surface. It was in this fashion that 
Gauss presented his idea; it had been given in substance, 
if not in so many words, by Olinde Rodrigues,$ who wrote 
the equation 

1 _/dX\/dY\ ZdX\/dY\ 

1ÏR7 = U/W/ " \dy)\dx)' 
Still the credit for actual statement is Gauss', the year 1816.§ 

The important part of Gauss' work on the measure of 
curvature is not in the statement given, but in the demon­
stration that this expression is invariant under every trans­
formation of the surface which leaves distances invariant, 
so that mutually applicable surfaces have, at corresponding 
points, the same measure of curvature. Moreover, this 

* Collected Works, vol. 5, 1867, p. 14. 
t Ibid., vol. 4, pp. 189 ff. 
X Correspondence de l'École Royale Polytechnique, vol. 3, 1816, p. 168. 
§ Works, vol. 8 (1900), p. 367. 



I929-J HEROIC AGE OF GEOMETRY 35 

particular invariant, and its extension to higher spaces, has 
proved to be fundamental in non-euclidean geometry, as 
pointed out by Riemann and Beltrami and many others. 

A good proportion of the Disquisitiones is devoted to the 
study of geodesic or shortest lines. Gauss reaches the dif­
ferential equations for such lines by straightforward methods 
of the calculus of variations. His equations show at once 
the characteristic property that the principal normal to 
the curve is normal to the surface, a fact first discovered by 
Johann Bernoulli.* What is rather curious is that Gauss does 
not point out that geodesic lines may be characterized by 
the fact that geodesic curvature is everywhere zero, even 
though Gauss himself appears to have been the first to study 
this sort of curvature.f He presently proves the existence 
of geodesically parallel curves. The latter part of the essay 
is largely devoted to the study of geodesic triangles. 

If the ultimate influence of the Disquisitiones was incal­
culable, we can not affirm that its importance was im­
mediately felt.J He had an immediate and devoted follower 
in Minding, who published an entirely Gaussian article on 
the development of curves on surfaces in 1830.§ But in 
1831, we find, Mlle, de St. Germain writing^ 

"Si par rapport aux surfaces on avait besoin de connaître 
la mesure de courbure . . . le mémoire d'Euler contient tout 
ce que l'on sait d'important à cet égard." The surprising 
thing is not that a French woman should write this, but 
that Crelle's Journal should publish it. 

I t is fair to say that Mlle, de St. Germain will have 
nothing to do with any measure of curvature but mean éur-
vature. I t seems unlikely that the ideas of Gauss were under­
stood or appreciated at all in France till the indefatigable 

* See his letter to Leibnitz in Gott. Gui. Leibnitii et Johann Bernoullii 
Commercium, vol. 1, Lausanne, 1745, p. 393 near bottom. 

f See his fragment on Seitenkrummung, Works, vol. 8, pp. 386 ff. 
% In this matter I cannot agree with Stàckel, Gauss als Geometer, 

Gauss' Collected Works, vol. 10, Part II, Section IV. 
§ Journal fiir Mathematik, vol. 6. 
1 Ibid., vol. 7. 
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Liouville lectured on them in the autumn of 1850.* Perhaps 
we may say that the final consecration only came in 1867 
when Bonnetf proved that every set of solutions of the Cod-
azzi equations determines a single surface completely, except 
for motions of space. 

Such was the work of the leading geometers of one hundred 
years ago. What shall we say of them today? Well, for my 
part, I am willing to quote Scripture and say "There were 
giants in the land in those days." Think of Poncelet in a 
Russian military prison at Saratoff laying down the funda­
mental principles of projective geometry, Lobachevski and 
Bolyai breaking the chains of servitude to Euclid that had 
lasted for twenty-one centuries, Gauss laying an absolutely 
secure foundation for the geometry of any manifold in any 
space. Such work calls for ability of a high order. More­
over, there is one common element in all this work to which 
I should like to call your attention, the very nice balance 
between specific results and general theory. A distinguished 
Scots philosopher, whose lectures I once had the privilege 
of attending, was forever insisting that it was the great task 
of philosophy to "Combine the univairsal and the partee-
cular in a higherrr uneetie." It seems to me that geometry 
is called upon to do much the same thing. No individual 
theorem, be it that of Feuerbach, or even that of Pythagoras, 
can rise to the dignity of a general mathematical principle. 
Every mathematical proposition or system must be given 
the greatest possible breadth, in reason. But I wonder 
whether we are not today in some danger of extinguishing 
the vital spark in geometry by the excessive abstraction and 
generality of the results which we seek and publish. It is 
my personal credo that geometry is a branch of art. I find 
more emotional appeal in a Raphael Madonna or a Gothic 
cathedral than I could ever get from a picture of "Things 
in general" or a building intended for all possible purposes. 

Perhaps the difficulty is inevitable, and there remain no 

* See Liouville, Comptes Rendus, vol. 32 (1851), p. 533. 
t Journal de l'École Polytechnique, vol. 25, Cahier 42, pp. 31 ff. 



1929.] HEROIC AGE OF GEOMETRY 37 

geometric results to be found which are at once so definite 
and yet so general as what has been found in the past. This 
may be so, but I like to think otherwise. I do not so far 
despair of the Republic. If anyone had asked Lagrange, 
who died but fifteen years before the beginning of the epoch 
we have considered, whether he believed there was much 
yet to do in geometry, he might well have given a hesitant 
answer. Let us have confidence that our five-thousand-year 
old science of Earth-measurement has still some beautiful 
secrets which she will yield when challenged by anyone who 
is sufficiently able and sufficiently fearless. Let us believe 
that 

"Some noble deed of note may yet be done 
Not ill-befitting men that strove with gods." 

HARVARD UNIVERSITY 


