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ON THE METRIZATION PROBLEM AND RELATED 
PROBLEMS IN T H E THEORY OF 

ABSTRACT SETS* 

BY E. W. CHITTENDEN 

1. Topological Space. In the theory of abstract sets we as­
sume that we are given an arbitrary aggregate P and a relation 
between subsets of P which corresponds to the relation be­
tween a set and its derived set in the classical theory of sets 
of points, f That is, the mathematical concept abstract set in 
its current sense includes the notion limit point or point of 
accumulation. The introduction of limit points permits the 
definition of continuous 1-1 correspondence or homeomorphy. 
The study of such correspondences, particularly of invariants 
under homeomorphic transformations, constitutes the science 
of topology or analysis situs.J I t seems proper therefore to 
speak of an abstract set as a topological space. § Throughout 
this paper, the term topological space or abstract set refers 
to any system of the form (P, K) composed of an aggregate 
P and a relation of the form EKE' between the subsets 
£ , E' of P which is subject to the condition, for every sub­
set E of the aggregate P there is a unique set E' in the relation 
K to E. That is, the relation K defines a single-valued set-
valued function on the class U of all subsets of the aggregate 

y 
* Presented to the Society by invitation of the program committee, at 

the Summer Meeting, Columbus, Ohio, September 8, 1926. 
f See M. Fréchet, Esquisse d'une théorie des ensembles abstraits, Sir 

Asutosh Mookerjee's Commemoration volumes, II, p. 360, The Baptist 
Mission Press, Calcutta, 1922; Sur les ensembles abstraits^ Annales de 
l'Ecole Normale, vol. 38 (1921), p. 341ff. 

| See H. Tietze, Beitrdge zur allgemeinen Topologie, L, Mathematische 
Annalen, vol. %% (1923), p. 290. 

§ This terminology is suggested by Fréchet. See Comptes Rendus, 
vol. 180 (1925), p. 419. 

|| These functions are studied in detail in an unpublished article by the 
writer. 
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2. The Metrization Problem. The problem is to state in 
terms of the concepts point, and point of accumulation the 
conditions that a topological space be metric. 

A metric space* is any topological space in which the points 
of accumulation are defined or definable in terms of a func­
tion (p, q) called the distance between the points p and q and 
satisfying the following conditions. 

(0) The distance (p, q) is a definite real number for every pair 
of points p, q. 

(1) Two points are coincident if and only if their distance is 
zero. 

(2) For any three points p, q, r, 

(P,q) è (P,r) + (q,r). 
I t follows readily from these conditions that the distance (p, q) 
is non-negative, and that it is symmetric in p and q, (p, q) 
= (q, p)."\ In a metric space a point p is a point of accumula­
tion of a set E provided its distance from a variable point of 
E which is distinct from p has the lower bound zero. 

The following illustrations convey some notion of the scope 
of the concept metric space. If the aggregate P denotes the 
linear continuum of all real numbers and (p, q) = | p — q |, the 
resulting space is metric. Similarly euclidean space is also 
metric. The Hubert J space of infinitely many dimensions in 
which the coordinates • of each point are 
subject to the condition that the sum of their squares be a 
convergent series is a metric space in which distance is defined 
by the formula 

(p,q) = [ O i - ^ i ) 2 + (X2~y2)2 + • • • 

+ (xn-yny + • •• J1/2; 
* F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914, p. 211. 

The definition of distance is due to Fréchet, Sur quelques points du calcul 
fonctionnel, Rendiconti di Palermo, vol. 22 (1906). 

t A. Lindenbaum, Vespace métrique, Fundamenta Mathematicae, vol. 
8 (1926), pp. 209-222. 

JD. Hubert, Göttinger Nachrichten, vol. 8 (1906). Hausdorff, loc. cit., 
p. 287. 
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in which the xn, yn are the coordinates of p and q, respectively. 
If we take for our aggregate P the class of all functions 

p~f(x), on an interval a^x^b, whose squares are summable, 
and define distance by the formula 

(PA) = [ƒ[ƒ(*) -*(*)]• i*] l / l , 

we obtain a metric space. It is necessary to make the con­
vention that two points coincide if the corresponding functions 
differ only at a set of points of measure zero. The relation 
p—Lpn corresponds to convergence in the mean for the se­
quence of functions pn=fn(x). 

3. Hausdorff Spaces. A remarkable and important class 
of topological spaces has been defined by F. Hausdorff.* In 
a Hausdorff space the points of accumulation are defined in 
terms of a family of neighborhoods U conditioned by the 
following four postulates. 

(A) To every point p there corresponds at least one neighbor­
hood U, and each neighborhood of p contains p. 

(B) There is a neighborhood of a point p common to every two 
neighborhoods of p. 

(C) If q is any element of a neighborhood U of a point p, then 
U contains all the points of a neighborhood of q. 

(D) If p and q are distinct points, there exist neighborhoods 
of p and q, respectively, which have no common elements. 

The topological spaces of Hausdorff are evidently included 
among the classes (V) of Fréchetf in which the postulated 
family of neighborhoods is subject only to the condition (A). 
In a class (V) a point p is a point of accumulation of a set E 
in case every neighborhood of p contains a point of E distinct 
from p. 

* Loc. cit., p. 212. 
t Esquisse, p. 346; Bulletin des Sciences Mathématiques, (2), vol. 42 

(1918), pp. 1-19. 
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I t is easy to show that every metric space is a Hausdorff 
space. Let S(p, a) denote the generalized sphere composed of 
all the points q of a metric space which satisfy the inequality 
(p, q) <a. The family of all such spheres of center p and radius 
a has the four properties of Hausdorff and evidently defines 
the same points of accumulation as the distance (p, q). 

The following set of properties form a necessary and suf­
ficient condition that a topological space be a Hausdorff space.* 

(I) (A+B)'-A'+B'. 

(II) A set containing but a finite number of points has no 
point of accumulation. 

(III) The derived set of every set is closed. 

(IV) If p and q are any two distinct points there exist open 
sets U and V which are disjoined and contain p and q respect­
ively. 

To complete the solution of the metrization problem we 
need only add the conditions that a Hausdorff space be metric. 

4. Existence of Non-Constant Continuous Functions. The 
metrization problem is included in another problem proposed 
by Fréchet in correspondence with Paul Urysohn and with me. 
I t is evident that the distance (p, q) of two points p and q is a 
continuous function of its arguments, and is not constant in a 
space of two or more points. Thus the metrization problem is 
related to the more general problem, under what conditions 
does a topological space admit the existence of a non-constant 
continuous function, f The topological conditions for the exist­
ence of such functions in a Hausdorff space have been dis-

* Esquisse, p. 367. 
t The definition of continuous function for general topological space is 

given by Fréchet in the following form : A point p of space is interior to a 
set I if it belongs to I and is not a point of accumulation of any subset of the 
of the complement of I, P—I. A function f — f (p) is continuous at a point p 
if the oscillation of the function ƒ on the sets I to which p is interior has the 
lower bound zero. Esquisse, p. 363. 
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covered by Urysohn.* I have recently succeeded in formulat­
ing these conditions for topological spaces in general. 

The following form of the question regarding the existence 
of non-constant continuous functions is of particular import­
ance in the present discussion. Characterize those spaces of 
Hausdorff in which it is possible to define for every two dis­
joined closed sets A and B a continuous function f(p) 'which 
is equal to zero on A, one on B, and satisfies the inequality 

0 é f(p) £ 1 

everywhere else, that is, on the set C=P —A—B. 
We shall show that it is both necessary and sufficient for 

the space to be normal. A space is normal provided every 
pair of closed disjoined sets A and B is separated by open sets, 
that is, that there exist open sets 17, F which are disjoined and 
include A and B respectively. 

Since the condition is evidently necessary we proceed to 
the proof of its sufficiency. Let P be a normal Hausdorff space 
and let A and B be any two disjoined subsets of P . From the 
hypothesis of normality there exist two open sets [7i, Vi such 
that 

A = Ui, £ « Vu UxVi « 0. 

The set P— Ui is closed and includes Vi. It follows that there 
exist disjoined open sets UQ, VQ such that 

A ^ *7o, P - Ux£ V0. 

Thereforef 

A g U0 £ U0° £ Ui, B ^ P - Ux. 

Since C70° and P—Ui are disjoined closed sets there is an open 
set U1/2 for which 

A g U0° £ Um S Uln S Uu 

* Über die Mâchtigkeit der zusammenh&ngenden Mengen, Mathematische 
Annalen, vol. 94 (1925), p. 290. 

•f C/o = u+U'. 
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It follows readily that there exists for any positive integer 
n a series of the form 

A £s UQ ^ Ui/2n ^ Z7i/2W tè ' * * = Urn/yn, ^ Z7m/2n 

£ • • ^ Z7i 

where B=P-Ui. 
If x = Lrn} where rn = mn/2

n, and 0 ^ r n ^ r n + i ^ x ^ l , we set 
00 

tf* = Z urn. 

By definition C/*^ Ux
f iî x<x'. Furthermore US S Ux>. For 

if n and m are chosen so that x <m/2n <(m + l)/2n <x', then 

£7* â Ĉ m/2W è t/(mfl)/2W ^ ?/*'. 

LetLo=U0;Ll==P--Ui;Lx=U2--Ux, 0 < x < l . Then the 
sets Lx(0^x^ 1) are closed, and if x?*x', LxLX' = 0. The func­
tion f{p) which is equal to x when p is a point of L* has the 
required properties. 

5. Perfectly Separable Spaces. Among the spaces which 
were considered by Hausdorff are those whose points of ac­
cumulation are definable in terms of an enumerable family of 
neighborhoods.* Such spaces are said to satisfy the second 
axiom of enumerability. Tychonoff and Vedenissof have 
called them separable spaces.! In a letter to me Fréchet calls 
attention to the fact that the word separable is already in use 
in a more general sense and suggests the term perfectly separ­
able. The following important and remarkable theorem was 
discovered by Urysohn.J 

THEOREM. A necessary and sufficient condition that a per­
fectly separable Hausdorff space be metric is that it be normal. 

I t is easy to show that every metric space is normal. § Let 
A and B be any two disjoined closed sets and let ap denote the 

* Loc. cit., p. 263. 
t Bulletin des Sciences Mathématiques, vol. 50 (1926), p. 17. 
t Mathematische Annalen, vol. 94 (1925), p. 309. 
§ Tietze, loc. cit., p. 311. 
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lower bound of the distance (p, g) as q varies over B. Let U 
be the sum of the spheres S(p, ap/3) obtained by considering 
all the points of A. Let V denote the corresponding open set 
enclosing B. Then [/"and F a r e disjoined. For if r is a point 
common to U and V there exist points p and q such that 
(P> i) <c/3, (q, r) <c/3, where c is the greater of api bq. Then 
we have 

(P,Q)£ (P,r) + (r,q) <2c/3, 
contrary to the befininition of ap bq. 

To show that the condition is sufficient let 

Uu Z7a, Z78> • • • , Uh- •• , Ui9 • • • 

represent an enumerable set of neighborhoods determining the 
points of accumulation of a normal Hausdorff space P . For 
each of the enumerable family of pairs of neighborhoods 
Uit Uj, such that UiQ ^ l/,-, there is a continuous function 

ƒ=ƒ(/>) which satisfies the conditions f(p) = 0 on Z7*0, f(p) = l 
on P— Uj, 0 ^ / ( £ ) ^ l on P . Let the set of all such functions 
be represented by the sequence 

Consider the function 

(*>, 2)= £[ƒ(/>)-/(2)]/2". 
n - 1 

This function is continuous because it is the sum of a uniformly 
convergent series of continuous functions. I t is furthermore 
evident that (p, p) =0 , and that {p, q)£(p9 r) + (q, r). 

It is necessary to show that if p9*q then (p, q) > 0 . Let Uj 
be a neighborhood of p which does not contain the point g. 
Since the sets A =p and B — P—Uj are closed and disjoined 
there is a neighborhood Ui such that Ui°= Uj. Let fn(p) be 
the continuous function corresponding to the two sets Ui, Uj. 
Since fn(p) = 0 and fn(q) = 1, we have (p, q) ̂  l /2 n , which was 
to be proved. 

I t remains to show that the neighborhoods U% and the dis­
tance (pt q) just defined determine the same space. This will 
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be the case if for each point p every neighborhood of p contains 
a sphere S(p, a) and if every such sphere contains a neighbor­
hood of p. Since the distance (p, q) is continuous in q it follows 
that a neighborhood of p, Ui, can be found on which the 
oscillation of the function (p, q) is less than a/2 for any value 
of a ( > 0 ) . Hence the sphere S(p, a) includes the neighbor­
hood Ui. 

Suppose that there is a point p and a neighborhood U3- of p 
such that for every positive value of a there is a point qa of the 
sphere S(p, a) which is exterior to U j . As before there exists 
a neighborhood Ui of p such that Ui ^ Uj. Let fn be the func­
tion associated with the pair of neighborhoods Ui, U,. Then 
fn(q) = 1, and (p, q) = l / 2 n . This is impossible if a<l/2n. 

6. Axioms of Séparation. The property of normality is the 
third of a series of four axioms of separation which have been 
discussed in detail by Tietze.* Two point sets A and B are 
separated by open sets U, V if 

A = U, B = V, UV = 0. 

We consider the following four cases. 

(1) The sets A and B each contain one point only. 

(2) The set A contains a single point, the set B is closed. 

(3) A and B are any closed sets. 

(4) A and B are disconnected. That is, neither set contains a 
point of accumulation of the other. 

The first of these axioms of separation is Axiom (D) of the 
set defining a Hausdorff space, and coincides with the fourth 
of the conditions that a topological space be a space of 
Hausdorff. We indicate the axiom which corresponds to case i 
by the symbol (IV»). In the terminology of Paul Alexandroff 
and Urysohnf a space satisfying axiom (IV2) is regular; (IV3) 
is normal ; (IV4) is completely normal. Each of these axioms 

* Loc cit., p. 300, etc. 
t Mathematische Annalen, vol. 92 (1924), p. 263. 
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is stronger than its predecessor and independent of it» Metric 
spaces are completely normal. However there exist spaces 
which are completely normal but not metric* 

7. Regular Spaces. Is a regular perfectly separable Haus­
dorff space normal? This question was proposed by Urysohnf 
and answered in the affirmative by Tychonoff.J Let A and B 
be any disjoined closed sets and let 

U1}U2,UZ, • . . ,Um, • . . 

be an enumerable system of open sets defining the points of 
accumulation of a Hausdorff space P . For each point p of the 
set A there is a neighborhood Unp of p which with its derived 
set contains no point of B. The class of all the neighborhoods 
Unp determined by the points of A and the set B forms a 
sequence 

Vl9V*,V9, • • • ,V«, • • • 

of open sets whose sum includes the set A. In similar fashion 
we define a sequence of open sets 

WifW2,Ws, • . . ,Wn, • • • 
hose sum includes B, such that WJ?A = 0, n = l, 2, 3, • • • . 
Let Gi—Ui, i ? i= Vi — Gi°, and in general, 

Gn = tf * - £ ff *° , ff n = Fw ~ £ Gi° . 

The sets Gn and i? n are evidently open. If we now set 
00 00 

G ** ZL ^ w , ff *= 2-rf ^ n > 
n = l n - 1 

we can show that 

i l g G , BgH, GH = 0. 

Since no point of 4̂ is contained in any set V», Gn̂ 4 = Z7ni4, 
and therefore A^G. Similarly B^H. Suppose that there is 
a point p common to G and H. Then there must exist indices 

* Tietze, loc. cit. 
t Mathematische Annalen, vol. 94 (1925), p. 315. 
J Mathematische Annalen, vol. 95 (1926), p. 139. 
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m and n for which p is common to the sets Gm, Hn. If m^n, 
we have 

GmHn = Gm( Vn- Z « ) ^ G*(7n - GJ>) = 0, 

a contradiction. A similar contradiction is obtained if m>n. 
This result when combined with the theorem of the pre­

ceding section gives the fundamental theorem. 

THEOREM. A necessary and sufficient condition that a perfect­
ly separable Hausdorff space be metric is that it be regular. 

8. An Axiom of R. L. Moore. The importance of the 
regular and perfectly separable, therefore metric, spaces in the 
analysis of continua is indicated by the fact that nine years 
before the publication of the discoveries of Urysohn, R. L. 
Moore assumed these properties in the first of a system of 
axioms for the foundations of plane analysis situs.* This axiom 
is furthermore of particular interest historically since it yields 
when slightly modified a necessary and sufficient condition 
that a topological space be metric and separable. The modi­
fied axiom of Moore may be stated as follows. 

AXIOM (R. L. Moore). We are given a space P in which 
point of accumulation is defined in terms of a family of classes of 
points called regions. Among the regions there exists a funda­
mental enumerable sequence 

RiiRïiR*, ' • • ,Rn, ' • ' 

with the following properties : (0) for every region R there is an 
integer n such that Rn is a subset of R; (1) for every point p and 
integer n there is an integer n' greater than n such that Rn> con­
tains p ; (2) if p and q are distinct points of a region R there is an 
integer m such that if n is greater than m and Rn contains p, then 
Rn is a subset of R — q.] 

* On the foundations of plane analysis situs, Transactions of this Society, 
vol. 17 (1916), pp. 131-164. The hypothesis of regularity was also made 
(apparently independently) by L. Vietoris, Monatshefte, vol. 31 (1921), 
p. 176. 

t This differs from Axiom 1 (loc. cit.) with respect to the first sentence 
and condition (0) only. 
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It is easy to show that in a space satisfying this axiom the 
regions are open sets, and that the space is a regular and per­
fectly separable Hausdorff space, therefore metric and separ­
able. The converse of this proposition is also true and is estab­
lished by the following chain of propositions. 

The axiom of Moore is a topological invariant. That is, if 
the axiom is satisfied in one of two homeomorphic spaces it is 
satisfied in the other. Furthermore if the axiom holds in a 
space P it holds in any relative subspace of P. 

It is easy to show that every compact metric space admits 
the axiom. Since Urysohn* has shown that every separable 
metric space is homeomorphic with a subset of a compact 
domain in the Hubert space it follows immediately that every 
separable metric space satisfies this axiom, f 

THEOREM. A necessary and sufficient condition that a topo­
logical space be metric and separable is that it satisfy the axiom of 
R. L. Moore.% 

9. Metrization of Compact Spaces. It can now be shown that 
a compact and perfectly separable Hausdorff space is metriz-
able. It is sufficient to show that it is regular. We have to show 
that for each point p and closed set A there are open sets V, U 
which separate p and A. Enclose each point of a given closed 
set A in an open set which does not contain p and consider 
the system of open sets thus obtained together with the open 
set P—A. Since every compact perfectly separable space has 
the "any-to-finite" § property of Borel, a finite subset of these 
open sets may be selected which covers the closed set A. Let 

UliU2yUd>U,} ••• ,Un 

* Mathematische Annalen, vol. 92 (1924), p. 302. 
t I have obtained a direct proof of this proposition. 
% The fact that Axiom 1 is a sufficient condition for metrizability was 

inferred by R. L. Moore from the theorem of Tychonoff in §7 above. 
§ The phrase was introduced by T. H. Hildebrandt in an article on The 

Borel theorem and its generalizations, this Bulletin, vol. 32 (1926), pp. 
423-474. 
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be a finite family of open sets whose sum U includes A but 
not p. Then there is a neighborhood V of p which contains no 
point of the open set £7. The proof of the following theorem of 
Urysohn* is now easily completed. 

THEOREM. A necessary and sufficient condition that an in-
finite compact Hausdorff space be metrizable is that it be perfectly 
separable. 

10. The Metrization Conditions in Locally Compact Spaces. 
The result just obtained has been applied by Alexandrofff to 
locally compact Hausdorff spaces. A space is locally compact 
provided there is for every point p a neighborhood V such that 
V° is compact. The following fundamental theorem may be 
stated. 

THEOREM. A necessary and sufficient condition that a locally 
compact Hausdorff space be metrizable is that the space be perfect­
ly separable or else be the sum of a set {of arbitrary cardinal num­
ber) of disjoined domains which are perfectly separable subspaces 
of the given space. 

The proof that this condition is sufficient follows lines in­
dicated previously. The essential part of the proof that the 
condition is necessary consists in showing that every locally 
compact metric space which is not perfectly separable is repre-
sentable as a sum of disjoined perfectly separable spaces. 

In a locally compact metric space every point p is the center 
of a sphere S{p1 a) which is compact and therefore perfectly 
separable. Let G0 = S(po, a0) and assume that Gn is defined 
and perfectly separable. Then Gn+i is defined to be the sum 
of all the spheres S(p, a) which contain a point of Gn. The set 

G = Go + Gi + • • * + Gn + • • • 

is perfectly separable. If po is replaced by any point of G the 
process just defined will lead to the same set G. Thus the 

* Mathematische Annalen, vol. 92 (1924), pp. 275-293, and vol. 94 
(1925), p. 313. 

t Mathematische Annalen, vol. 92 (1924), pp. 294-301. 
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given space admits a decomposition into disjoined perfectly 
separable metric subspaces. 

This theorem has the following interesting corollary. 

COROLLARY. A necessary and sufficient condition that a 
connected and locally compact space be metrizable is that it be 
perfectly separable. 

11. Relations between Metrization and the Existence of Con-
tinuous Functions. We have seen that the metrization prob­
lem is related to the more general problem of the existence of 
non-constant continuous functions and how the study of the 
latter problem led Urysohn to the solution of the metrization 
problem for perfectly separable spaces. It is therefore of inter­
est to formulate the conditions that a space be metrizable in 
terms of continuous functions. 

THEOREM. A necessary and sufficient condition that a topo­
logical space which is equivalent to a class ( V) of Frêchet be met­
rizable is that there exist a family of equally continuous functions 
with the following properties : 

(1) each function of the family is defined and continuous 
throughout the space ; 

(2) for each point p there is a function of the family which 
vanishes at p and is bounded from zero on the complement of 
every neighborhood of p. 

To show that the condition is necessary, let P be a metric 
space and define the required family of functions to be the 
class of all functions <j>(p) = (p, q), where (p, q) is the distance 
from p to q, the point q is held fixed and the point p allowed to 
vary. That this family of functions has the required properties 
is an immediate consequence of the conditions satisfied by the 
distance between two points. 

I t will now be shown that the condition is sufficient. The 
definition of distance is derived from the formula 

, , v \<KP) - *(?) i 
\p,q) = lim sup 1 + |*(*) - *(g) 
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where all functions 0 of the given equally continuous family 
are to be considered. I t is evident that the function (p, q) 
just defined has the properties of distance. I t remains to con­
sider the relation between distance and point of accumulation. 

Suppose that a point p is a point of accumulation of a set E. 
Because of the equal continuity of the functions 0 there is for 
every positive number e a neighborhood V of p on which the 
oscillation of each function is less than e. Therefore the dis­
tance of the point p from the set E is zero. 

Conversely, suppose that every sphere S(p, a) of center p 
and radius a in the metric space just defined contains a point 
q of a set E. Let V be any neighborhood of the point p in the 
given space ( V). By the second condition of the theorem there 
is a function 0 and a number e such that | 0 | >e on the set 
P - V. This implies that (p, q) >e/2 for all points q of P- V. 
Therefore the sphere S(p, e/2) is contained in the neighborhood 
V. That is, V contains a point of E, and the point p is by 
definition a point of accumulation of E. 

12. The Equivalence of Distance and Uniformity Regular 
Écart. Attempts have been made by Fréchet,* E. R. Hedrick,f 
A. D. Pitcher, and the writer $ to obtain effective generaliza­
tions of the theory of metric spaces. That is, to impose hy­
potheses which yield substantially the same group of theorems 
about point sets and are less restrictive. It has however been 
established in each case that the conditions proposed imply 
that the resulting space is equivalent to a metric space. 

In the theory proposed by Fréchet, distance is replaced by 
a function (p, q) with the properties (0), (1) of distance and 
the further property 

(2;) There is a function f {e), approaching zero with e, such 
that for any three points p, q, r, 

(p,r) ^ e, (q,r) ^ e, imply (p,q) ^ f{e). 

* Sur quelques points du calcul fonctionnel, Rendiconti di Palermo, vol 
30 (1906), p. 1-74. 

t Transactions of this Society, vol. 12 (1911), pp. 285-294. 
% Transactions of this Society, vol. 19 (1918), pp. 66-78. 
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The discovery by H. Hahn* that every space of this type 
which contains two or more distinct points admits continuous 
non-constant functions led Fréchetf to the conclusion that this 
class of spaces is metrizable. This conclusion was verified by 

Chittenden.J 
From this and other considerations Fréchet§ has in his later 

papers employed the term écart to refer to a non-negative 
single-valued real-valued function of two points. In this ter­
minology the function (p, q) which was formerly called a vois­
inage becomes a uniformly regular écart. 

THEOREM. The concepts uniformly regular écart and dis­
tance are equivalent. 

Since distance is a uniformly regular écart for which/(e) = 2e 
it is sufficient to show that a class of equally continuous func­
tions satisfying the conditions of the theorem of §11 above 
may be defined in any space admitting a definition of its points 
of accumulation in terms of a uniformly regular écart. 

If the given space P is singular the theorem is obvious. If 
it contains at least two points a number a > 0 can be chosen 
with the property : for every point p there is a point q such that 
(p, q) >a. This number a may be determined in the following 
manner. Let qf, q" be any two distinct points and let a be 
chosen so that ƒ (a) < (qf, q"). Then one of the points q', qn 

is effective as the required point q. For if (p> q')^ay and 
(Pi <z") ̂ a , then by the property (2') 

contrary to the definition of a. 
Suppose af<a chosen so that f (a') <a. Let po beany fixed 

point and let|| 

A = S(po,a'), B = P - S(po9a), C ** P - A - B. 

* Monatshefte, vol. 19 (1908), pp. 247-257. 
t Rendiconti di Palermo, vol. 30 (1910), p. 22-23. 
t Transactions of this Society, vol. 18 (1917), pp. 161-166. 
§ See Bulletin des Sciences Mathématiques, (2), vol. 42 (1918), pp. 1-19. 
|| The validity of the following discussion is unimpaired in case the set 

C or any of its subdivisions is a null set. 
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The sets A0, B° are disjoined. Suppose the contrary. Then 
there would exist points p, q, r of A, B, C, respectively, such 
that (p,r)<a", (q,r)<a"f where ƒ (a") <a'. Then since 
(po, P) <a'i and (p, q) èf(a") < a ' , we have (po, q) g a, a contra­
diction. 

The set C will be divided into disjoined sets Co, G accord­
ing to the following rule. If (r> A) = (r> B)} where (r, A) de­
notes the distance from the point r to the set A, the point r is 
assigned to C0, otherwise to G- The sets ^4°, G° are disjoined, 
likewise the sets C0°, B°. I t is sufficient to give the proof for 
the first case. Let a number c be chosen so that f(c) <a", and 
assume that there is a point r common to A °, G° • Then points 
£ and q oî A and G respectively exist such that (p, f )<c , 
(q, r)<c. Therefore (p, q) ûf(c) <an'. From the definition of 
G there is a point q' oî B such that (#, q')<(p, q)<a". There­
fore (p, q') ^f(an) <a' contradicting the definition of the set B. 

From the sets A, B, C we obtain by iteration of this method 
of subdivision a development of the space P of which the mth 
stage has the form 

A , CoO • • • Oj C o o • • • 0 1 | 0%i%2 • • ' im> ' ' * j C n . . . l j B } 

in which the indices i assume the values 0, 1 only. This se­
quence has the further property that there exists a number 
am (which is independent of po) such that the distance of any 
two non adjacent sets exceeds am. It is quite easily shown by 
mathematical induction that the numbers am may be so chosen 
that 

a > a i > a 2 • • • , Lam = 0, 
and that 

a>f(ai), 0 i>ƒ(02) , 

For each point p of C there is a unique set G x i 2 . . . %m of stage 
m of which it is an element. Consequently each point deter­
mines a unique sequence of indices, 

il) H, H> • * • , im, ' • • ? 

and therefore corresponds to the number in the binary scale 
determined by these indices. 
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We proceed to the definition of a function </> of primary im­
portance. On the set A, <f>{p) = 0, on B, </>(p) = l , o n C 

1>l 1 2 IS 

r 1 22 33 

This function is continuous. In fact, if (p, q) <am then p and 
q lie in adjacent classes of the rath stage of the development 
of the space P and therefore 

\<KP) - *(?) I ^ 1 / 2 - 1 . 
Since the function <£ is defined in terms of a and po, and the 
numbers am are independent of />0> it follows that the family 
of all such functions obtained by varying po and keeping a 
fixed is equally continuous. 

If we now make the definitions 

An ~ S(po,an)y Bn = P — S(po,an-i), 

n~\, 2, 3, • • • , ao*=a, and let <f>n denote the function defined 
relative to An, Bn by the foregoing process, we obtain the de­
sired family of equally continuous functions by considering 
all possible functions of the form 

00 

Since <t>n—l on Bn for each value of n, it follows that 
0 = l / 2 n > O o n the set P— 5(^o, #n-i). Since Lan = 0 the second 
condition of the theorem of § 11 is satisfied. 

13. Coherent Spaces. Another attempt to generalize effec­
tively the theory of metric spaces was made by A. D. Pitcher 
and E. W. Chittenden.* They considered an écart (p, q) 
in which the second condition on distance is replaced by the 
condition : 

(2") if L(p,pn) = 0, and L(pn,qn)*=0, then L(p,qn) = 0. 

A space in which the points of accumulation are definable in 
terms of a symmetric écart satisfying the condition (2") is 

* Loc. cit. 
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said to be coherent. It has recently been shown by Niemytski* 
that if the écart satisfies the further condition : (p, q)=0 is 
equivalent to £ = g, then the space is metric. 

14. Spaces Defined by Developments. The metrization 
problem for spaces whose points of accumulation are defined in 
terms of a development A was studied by Pitcher and Chit­
tenden, f A development A is an arbitrary system of sub­
classes Pm*(m = l, 2, 3, • • • , / = 1, 2, • • - , lm) of a funda­
mental class P in which the classes Pml for a fixed index m 
form a stage Am of the development. % The index lm may have a 
finite or infinite range. If its range is finite for all values of 
m the development is said to be finite, otherwise infinite. 

A point p is a point of accumulation of a set of points E 
relative to a development A provided there is a sequence of 
indices mi<m2<ms • • • and a corresponding sequence of 
classes PmA each of which contains an element of the set 
E—p. The reader is referred to the original article for the 
details of this investigation. The metrization problem was 
solved for compact spaces. The paper contains a set of neces­
sary and sufficient conditions that a compact Hausdorff space 
be metric. 

15. The General Metrization Problem. The general prob­
lem, to determine the topological conditions for the metri­
zation of a topological space, was first explicitly stated and 
solved by Alexandroff and Urysohn.§ It is however of interest 
to note that E. R. Hedrick|| in continuing the search begun by 
Fréchet for a generalisation of metric space discovered that 
a number of important theorems stated by Fréchet for classes 

* In an article to appear in the Transactions of this Society, 
t Transactions of this Society, vol. 20 (1919), pp. 213-233. 
% This definition is due to E. H. Moore, New Haven Mathematical 

Colloquium, Yale University Press, New Haven, 1910, pp. 1-150. 
§ Comptes Rendus, vol. 177 (1923), p. 1274. 
|| Loc. cit. 
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(V) normales* could be proved in any class (L)t in which de­
rived sets are closed, providing the given space admits a prop­
erty called the enclosable property. While Fréchet$ soon 
proved that the space thus defined by Hedrick was in fact a 
"classe (V) normale" (therefore metric), it is important to ob­
serve that a slight modification of the conditions imposed by 
Hedrick constitute a set of necessary and sufficient conditions 
for the metrization of an abstract set. 

We shall give three solutions of the general metrization 
problem ; the first contains a modified form of the enclosable 
property of Hedrick, the second is due to Alexandroff and 
Urysohn, and the third is based upon the notion of coherence 
introduced by Pitcher and Chittenden. These three sets of 
conditions are alike in requiring the existence of a type of 
development A of fundamental importance which it is pro­
posed to call regular. 

Each stage of a regular development of a topological space 
is a family Am of open sets Vm which covers the space P. The 
development proceeds by consecutive stages, that is, each set 
ym+i 0f t j ^ (w-f i) st stage is a subset of a set of the mth stage. 
Furthermore, if 

V\V\V\ • • • , 7 " , • • • 

is any infinite sequence of open sets one from each stage of the 
development and if there is a point p which is common to the 
sets of the sequence, then that point is determined by the se­
quence. That is, if V is any neighborhood of the point p} then 
for some value of the integer m, we have Fm= V. The sets Vm 

of the mth stage of the development are said to be of rank m. 
The following additional definitions will be needed. Two 

points p, q are developed of stage or rank m provided there is a 
set of rank m which contains them both. In a regular develop-

* A "classe (V) normale" is a class that is separable, perfect, admits a 
definition of voisinage and a generalization of the theorem of Cauchy. 

t A class (L) is essentially a space in which point of accumulation is 
defined in terms of the relation limit of a sequence. 

Î Transactions of this Society, vol. 14 (1913), pp. 320-324. 
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ment two points which are developed of rank m are developed 
of any lower rank. 

Two sequences p my Cm are connected by a regular develop­
ment provided the points pm, qm are developed of stage 
w(w = l, 2, 3, • • • ). 

A regular development A will be said to be coherent provided 
the connection of sequences is transitive. That is, a sequence 
{pm} is connected with a sequence {qm} whenever there is a 
sequence {rm} such that {pm} is connected with Fmand {rm} 
is connected with {qm}. 

The (m+l)st stage of a development is said to be inscribed 
in the mth if every pair of sets of rank m + 1 which have a 
common point is contained in a set of rank m. 

THEOREM. Let P be a Hausdorff space admitting a regular 
development A in open sets Vm. Each of the following three con­
ditions is a necessary and sufficient condition that P be equivalent 
to a metric space. 

I. (Hedrick) For any positive integer m there is an integer n 
such that for any point p there is a set Vm of rank m which in­
cludes all sets of rank n which contain p. 

II. (Alexandroff and Urysohn) For each value of the integer 
m the (m + l)st stage of the development A is inscribed in the m th. 

III. The development A is coherent. 

Since it is evident that the three conditions of the theorem 
are necessary we may proceed at once to the proofs of their 
sufficiency. 

Let us consider first the condition of Hedrick. It will be 
convenient to assume that the class P is a set of zero rank and 
allow the index m to have the values m = 0 , l , 2 , 3 , - - - . Then 
from condition II there exists for each integer n an integer 
m — g(ri), the greatest value of m for which n is the integer 
determined by condition II. The function g(n) is unbounded. 
Suppose the contrary. Then there would exist an integer mr 

such that for every value of n, g{n) <m'. But there is an inte-
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ger n' determined by m\ contrary to the definition of g(n) as 
the greatest such integer. 

The écart (p, q) of two points is defined as follows. We set 
(p, p) = 0. If m is the largest integer for which p and q are 
developed of rank m then (p, q) = 1/2w. Evidently the écart 
is symmetric. And if p^q then (p, q) > 0 . For if the points p 
and q are developed of every rank m, then there is a sequence 
of sets Vm, one from each stage of the development to which 
both are common, contrary to the definition of a regular de­
velopment, and the fourth condition of Hausdorff. 

I t remains to be shown that the écart thus defined is uni­
formly regular and that it defines the space P . 

Let n be any integer and let pf q, r be three points such that 
{p> r)<l/2n, (q, r)<l/2n. If m = g(n) we have at once, from 
condition II , that p and q are developed of stage m and there­
fore (ƒ>, q) <l/2™. If l ^ - K ^ l ^ " , and we set f(e) = 1/2m 

we obtain a function/(e) satisfying the required condition (2'). 
I t remains to show that the given space and the derived 

space are equivalent. I t is evident that if every set Vm which 
contains p contains a point of a set E then the écart (p, E) 
is null. Conversely, if (p, E)=0 there is for every integer n a 
point qn of E such that (p, qn) < l / 2 n . That is, p and qn are 
common to some neighborhood Vn. I t follows that qn is an 
element of Vq{m)(p). Since Lg(n) = so, it follows from the 
regularity of the development A that every neighborhood of 
p contains a point of E. 

I t will now be shown that condition II implies condition I. 
We assume a regular development A satisfying condition II . 
A regular development Ai satisfying condition I for n = m+l 
may be defined in terms of A as follows. Stage Aim of Ai is the 
family of all open sets Um(p) obtained by forming the sum for 
each point p of all the sets Vm of rank m of A which contain p. 
To show that if a point p is common to a sequence of sets 

U\U\U* • • • ,U™, • • • 

then p is determined by that sequence, let V be any neighbor­
hood of p, and suppose that for each value of m there is a point 
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qm of Um which does not belong to V. Since qm is in the set Um 

there must be a set Vm of rank m of which contains both p and 
gy. But the sequence of sets Vm determines p. Therefore for 
some value of rn, Vm (and therefore qm) is contained in V, 
contrary to the hypothesis on qm. 

In the proof of the sufficiency of condition I the écart (p, q) 
of two points was defined, and without reference to that con­
dition. This definition will be applied in the proof of the 
sufficiency of condition I I I . Because of the result obtained by 
Niemytski stated in § 13, we have only to show that this 
écart satisfies the condition (2")> since the equivalence of the 
spaces has already been established. 

It is at once evident from the definition of écart that if two 
sequences are connected by the development then L(pn, qn) = 0 
and conversely. If then, L(p, £n)=0, and L(pn, gw)=0, the 
sequence composed of the repeated element p must because 
of condition III be connected with the sequence qn* Therefore 
L(P) â,)==0, as required by condition (2"). 

16. The Borel Theorem. A set E will be said to possess the 
"any-to-finite" form of the property of Borel in case every in­
finite proper covering F of E contains a finite proper covering. 
A family F of sets G is a proper covering of a set E if every 
element of E is interior to some set E. In a metric space a 
necessary and sufficient condition that a set E admit this 
property is that E be compact and closed. Thus the problem, 
to characterize those spaces in which the "any-to-finite" form 
of the property of Borel is equivalent to compact (or self-
compact) and closed, is very closely related to the metrization 
problem. As Hildebrandt* has presented an excellent and full 
account of recent work on this problem, it is unnecessary to 
discuss it further here. 
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* Loc. cit. 


