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THE TRANSVERSALITY RELATIVE TO A SURFACE
OF [fF(x, v, 2, ¥, 2")dx=MINIMUM*

BY JESSE DOUGLAST

1. Introduction and Statement of Theorem. Consider, for
illustration, a surface Z, on which 4 and B are any two
points. Then, of all curves in space which join 4 and B,
the straight line segment AB is the shortest; of all curves
on 2 joining 4 and B, the geodesic 4 B is the shortest.

The generalization from the length integral

(1) s= [a+yr+ e
to the general integral of first order
2 7= [Py o)

is obvious. Thus we may speak on the one hand of the
unrestricted extremals of J relative to space, ©* in number,
and, on the other, of the extremals of J relative to a given
surface 2, ©? in number.

The idea of transversality may likewise be defined relative
to a given surface as well as for space. Let us review the well-
known definitions and facts in this connection. The space
transversality T belonging to an integral Jis essentially a corre-
spondence between lineal elements and surface elements (of
the first order) characterized by the following two properties:
(1) a lineal element and its corresponding surface element
have the same base point, (2) if, taking an arbitrary base
surface S, we construct the 2 extremals of J which meet
S transversally, then lay off along each extremal, starting
at S, an arc over which the integral J has a fixed value,
the locus of the end points of these arcs is a surface trans-

* Presented to the Society, October 30, 1926.
t National Research Fellow in Mathematics.
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versal to the congruence of extremals. By varying the
fixed value continuously ! such transversal surfaces result.

Analytically, if a lineal element be fixed by coordinates
x, ¥, 2, ¥’, 2’ in the usual way, the transverse surface element
has the same base point x, ¥, 2, and the equation of its
(infinitesimal piece of a) plane is

3 (F — y'Fy — 2'Fo)ox + Fydy + Fodz = 0,

where 0x, 8y, 62 denote coordinates relative to x, y, 2.

The surface S or any of the other transversal surfaces
of the congruence of extremals may degenerate into a curve
or a point—in fact, the appropriate concept to use here is
not that of surface but Lie’s concept of union of surface
elements. The simplest representation of a transversality
is obtained by allowing S to be a point—the extremals
transversal to a point are simply those which issue from it.
In the illustrative case of the length integral (1) the trans-
versal surfaces are then concentric spheres, from which it
appears that for the length integral transversality is the
same as orthogonality*—a fact which is expressed analyti-
cally by the circumstance that the equation (3) formed
for (1) reduces to éx + y'8y + 2’6z = 0.

How is the transversality of J relative to an arbitrary
surface 2 defined? Let us construct the pencil of extremals of J
relative to 2 which radiate from a fixed point 0 of 2. If
we proceed along each extremal, starting from 0, until we
have run off a fixed value of J, the locus of points arrived
at is a curve T', which we say meets transversally the ex-
tremals radiating from 0. More definitely, if C is one of the
extremals through 0, intersecting I' at point p, the lineal
element X of I at p is termed transversal to the lineal element
1 of C at the same point. By varying 0, there is assigned
to each lineal element / of 2 a transverse lineal element \.

* The most general integral of the first order for which transversality

is orthogonality is fv(x, ¥, z)ds, where » is any function of its three argu-
ments.
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If C is the extremal containing the element , any point of C
may be used as point 0 to define the transverse element \;
we always get the same \.

The correspondence so defined between ! and N we call
the transversality of J relative to 2, and denote by 7;
it is of course to be carefully distinguished from the space
transversality T" of J. The analogy between = and T
is completed by the theorem that the extremals of J relative
to 2 which start transversally from any base curve have '
transversal curves, between any two of which arcs over
which J has the same value are intercepted on all these
extremals.

Now, in the theory of surfaces there is a classic theorem
of Gauss which may be stated as follows.

Any two orthogonal trajectories of a system of ! geodesics
of a surface intercept the same length on all these geodesics.*

In our terminology the theorem may be stated as follows:

The transversality v of the length integral relative to an
arbitrary surface Z is the orthogonality of lineal elements on 2.

The purpose of the present paper is to prove the following
more general theorem, which includes that of Gauss as a special
case.

THEOREM. The transversality v of any integral J relative
to an arbitrary surface Z s the section by Z of the space
transversality T of J.

By the section of T by Z we mean, naturally, the following:
Let I be any lineal element of 2, and let the surface element o
correspond to / by T'; then the lineal element A corresponding
to ! by 7 is the intersection of (the tangent plane of) Z
with o.

2. Proof. Let Z be represented by the equation
4) x+¢(y,z) = 0.

* G. Scheffers, Einfithrung in die Theorie der Flichen, second edition,
1913, p. 500.
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Let
(5) y =), z=2%

define a curve C on 2 which joins any two fixed points 0
and 1 of that surface. Then the infinitely near curve C

(6) y = y(x) + en(2), z = 3(x) + «(2)
may be considered as lying on £ when and only when
(N pn(x) + g¢(x) =0

where p=¢,(y, 2), ¢=¢.(y, 3) and y, z are to be replaced by the
functions of x appearing in (5); (7) then to hold identically
in %.

The conditions that C pass through 0 and 1 are

(8 7(xe) = 0, (%) = 0; n(x) =0, {(x1) = 0.

Supposing (7) and (8) verified, the variation of J in
passing from C to C is, by means of the usual integration
by parts,

1
9) 67 = f {AF)n + BE)¢)dx
0
where
d d
(10) A(F) =F, — —Fy, BF) =F,——Fy,
dx dx

d/dx denoting total differentiation with respect to the
abscissa of C. In order that C be an extermal of J relative to Z,
the necessary and sufficient condition is

(11) AF)n + BE) =0

for all 5, { satisfying (7), or ¢4 (F) —pB(F) =0 where all the
symbols involved are to be reduced to functions of x, abscissa
along C.

Suppose now 2 to denote any point on X infinitely near
to 1, and let C’ be the extremal relative to £ which joins
0 to 2. Its equations have the form (6) with (7) verified, and
1(x0) =0, ¢(x0) =0, but instead of the second pair of equations
(8) we have, expressive of the fact that C’ contains 2,
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(12) 8y = yldx + en(x1), 8z = z{dx + €f(x1),

where 0x, 8y, 62 denote the coordinates of 2 relative to 1
and x1, y1, 21, ¥, 3{ are the coordinates of the lineal ele-
ment of C at 1.

These equations then follow:

Jo = F(x,y,%y',z')dx,

z0

z,+0z
Joz=f {F‘I‘C(Fuﬂ+Fs§'+Fu"’l'+Fl’§')}dx

z0

= f "UF + eBin + Fig + Py’ + Fot')}de
* +F(x1,y1,21:)’1' ,z{)&x,

where we neglect infinitesimals of higher than the first order.
By subtraction we find

8 = Joz — Jn
= ej;:‘(F,n +F$ +Fyn'+Fo i) dx+F(x1, 91,81,y ,3{ )ox
= ¢{Fy(1)n(21) + Fur(1)¢(x1)}
+e f:‘{Amn + B(F)t }dw + F(1)ox.

0
The integral vanishes by (11), since 7, { satisfy (7) because
C’ lies on 2. Using (12), we have after dropping the index 1,
(13) 8] = (F — y'F, — 2'F,))ox + Fy 8y + F,.03.

For transversality, 6J =0, giving

(14) (F — y'Fy — 5'F,)8x + Fy8y + F.02 = 0.
Besides (14), d8x, 8y, 6z are restricted to satisfy
(15) ox + pdy + g0z = 0,

which is the equation of the element of Z in the immediate
neighborhood of 1 (tangent plane). The direction dx : 8y : 6z
transverse to 1 :y’ :2’ at 1 is to be found by combining
(14) with (15).
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Now (14) is identical with (3) defining the space trans-
versality of J. Hence our theorem.

The theorem is easily extended to an m space immersed
in an » space. Since a Riemann space of m dimensions
can always be immersed in a flat space of at most 2m(m+1)
dimensions, we have an immediate proof of the Gauss
theorem for a Riemann space of any number of dimensions.
For it is obvious that the transversality of the length
integral in a flat n-space is the orthogonality of lineal elements
to (n—1)-elements with the same base point, and evidently
the section of this transversality by any m-spread contained
in the n-flat is the orthogonality of lineal to (m—1)-elements
in the m-spread.

PRINCETON UNIVERSITY

ON THE EXTENSION OF A METHOD OF BRIOT
AND BOUQUET FOR THE REDUCTION
OF SINGULAR POINTS*

BY B. 0. KOOPMAN

In a classical memoir,t Briot and Bouquet gave a method
by means of which the differential equation

dx _ dy
X(x,9) V(=)

could be reduced to a simple standard form in the neighbor-
hood of an analytic singular point, i. e., a point at which
X (x, ¥) and Y(x, v) are analytic, but vanish simultaneously.
Although the method fails to be directly applicable to
certain special cases, it has shown itself to be of sufficient

* Presented to the Society September 9, 1926.
t JOURNAL DE L'ECOLE POLYTECHNIQUE, vol. 21, p. 161. See also
Picard, Traité d' Analyse, Paris, Gauthier-Villars, 1908, vol. 3, p. 34.



