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THE GEOMETRY OF FREQUENCY FUNCTIONS* 
BY DUNHAM JACKSON 

1. Introduction. The Pearson coefficient of correlation, 
calculated for a finite number of observations, has a geo­
metric interpretation which is simple and almost immediate.t 
The same thing may be said of the corresponding expression 
formed for a pair of functions of a continuous variable. £ 
When the distribution of the observed quantities is thought 
of as given by a frequency function, the geometric inter­
pretation of the correlation coefficient is not so obvious. 
It is the purpose of this paper to show one form that such 
an interpretation may take.§ The geometric configurations 
are exactly the same as in the other cases mentioned; the 
difference is in the manner of setting up the association. 
This is accomplished by defining an appropriate correspon­
dence between an arbitrary point of a plane, or of space, 
and an arbitrary linear combination of the variables sub­
jected to measurement. 

There will be no assumption that the distributions in­
volved are "normal", in the sense of the Gaussian law. 
There will be incidental reference to frequency functions 
having properties that correspond to those of normal ortho­
gonal sets of functions, as the terms are used in the theory 
of the development of arbitrary functions in series; but 

* Presented to the Society, October 25, 1924. 
f Cf., e. g., D. Jackson, The trigonometry of correlation, AMEEICAN 

MATHEMATICAL MONTHLY, vol. 31 (1924), pp. 275-280; also the paper 

cited in the next footnote. 
t Cf., e.g., D.Jackson, The elementary geometry of functio?i space; 

recently submitted to the AMEEICAN MATHEMATICAL MONTHLY. 

§ For another form, cf. James McMahon, Hyperspherical goniometry ; 
and its application to correlation theory for n variables, BIOMETEIKA, 
vol. 15 (1923), pp. 173-208. The fundamental idea of attaching a geo­
metric meaning to the correlation coefficient appears to be due to 
Pearson himself. 
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the word "normal" will not be used in this connection, 
because of the possibility of misunderstanding. As the 
paper is concerned primarily with the establishment of 
certain formal relations, questions of convergence will be 
avoided for the most part by assuming that the functions 
considered are different from zero only over a finite range; 
the concluding paragraph will deal briefly with distributions 
that "tail off" to zero at infinity. 

The order of presentation in the main part of the paper 
is closely parallel to that followed in the author's article 
on The elementary geometry of function space, to which 
reference has been made in a previous footnote. There 
is enough difference in detail, however, to call for an 
independent treatment at some length. 

2. Frequency Functions in Two Variables. To begin with 
the case of two variables, let cp(x, y) be defined and con­
tinuous as a function of its arguments over a finite region E 
of the plane; let it be everywhere positive or zero, and 
not identically zero. There is no essential loss of generality, 
and there is some gain of simplicity, in assuming that 

J JR 
y(x, y)dxdy = 1. 

For preliminary consideration, let it be supposed further 
that 9> satisfies the conditions* 

(1) J xycp = 0, J x\ =J y\ = 1, 

where J xycp is an abbreviated notation for the double integral 

J JjR 
xycp(x,y)dxdy, 

and where the other integrals are to be interpreted similarly. 
Let a and b be any two real numbers. Then we have 

J(ax-{-by)*<p = a2Jrb2, because of (1); if (a,b) are taken 

* A method of constructing an infinite variety of functions <p satis­
fying the conditions imposed will appear presently. 
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as the coordinates of a point, the value of the integral 
is the square of the distance of the point from the origin. 
If Px and P2 are two points with coordinates (oi7 h) and 
(o2, b2), and O the origin, the distance P t P2 is the square 
root of the quantity 

J [(o2 — ajx + ibz — b±)y]2g> = (a2~aiy
2 + (h — b1)

2
7 

and the cosine of the angle PxOP2 is 

0,08 + M a J((hx+hyH(hx+hy)9 

Thus the fundamental geometric measures can be expressed, 
somewhat indirectly and artificially to be sure, in terms 
of integrals involving the function <p. 

In transition, let 9 be a function subject to the same 
hypotheses as before, except that the last two of the 
conditions (1) are not imposed; and let* 

yjaty = cr, | / jy2cp = %% 

If new variables §, rj are introduced by means of the relations 
£ = x/a, r\ = y/v} so that, incidentally, d'§ = dx/a, 
drj = dy/r, and if the function <tv<p(x,y) is designated, 
with regard to its dependence on the new variables, by 
0(M,ij)} it is found that 

J J 0tè,i])d$dij = 1, J J §i7©(5,i7)dg<ty = 0, 

f §$*<*>($> V)dSdri = Jfrj2®(ly)dÇdy = 1, 

* Since JV = 1, the quantities a and r are the standard deviations 
of x and «/, when <p is interpreted as a frequency function, if Ja?^ 
= Sy<P = 0; these last conditions have no bearing on the formal work 
in hand, apart from its statistical interpretation, but they may be thought 
of as included among the conditions imposed on % if it appears that 
the notation is likely to cause confusion otherwise. 

(2) 

5 
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the integrals being extended over the region of definition 
of 0. A simple substitution has replaced y by a function 
satisfying all the original hypotheses. 

Now let % while retaining the other properties that 
have been assigned to it, be relieved of the restrictions (1) 
altogether. Let 

]/ jx*y = <t, jocy<P=P> y'=y—(pl<**)x, ]/ J y \ = *'• 

It is found by substitution that 

As a matter of notation, let x = x, </= ff, y{x,y) = ~y{x ,y). 
Since the functional determinant of x' and y with respect 
to x and y is 1, three of the above relations may be written 
in the form 

I I x'2y(xf,y')dxfdy' = </2? I I yf2y{xf,y')dxfdy' = T/2
? 

ƒƒ• 
the range of integration now being that over which y (x'9 y') 
is defined. The present y then corresponds to the function y 
in the preceding paragraph. To obtain a 0 satisfying (2), 
it is sufficient to let 

ç = x'/a', n = y'W, °'*'W,yf) = ®M-
The original variables x, y are expressed in terms of ?, tj 

by the equations 

(3) x = a% y = ^ £ + A? 

which are of the general form 

(4) x = «lS+fei^? 2/ = flfcS + M-

The particular determination of the coefficients specified 
in (3) is only one of an infinite variety of determinations 
which will serve essentially the same purpose. For if £ 
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and r\ are subjected to a further transformation defined 
by setting 

where 

«1+^1 = «2 + /#2 = 1, «l«2 + A/*2 = 0, 

and if #(?, rj)=Q(£' *?')> equations of the form (2) are satisfied 
in terms of the new variables §' and r[', because of the 
equations (2) themselves, in terms of £ and % and the fact 
that the functional determinant* of the transformation is 
+ 1 . There are accordingly infinitely many transformations 
of the form (4) which yield a 0 satisfying (2), if <Z> (£,*?) 
is equal to <p(x,y) multiplied by the absolute value of the 
determinant of the coefficients. Any transformation (4) ful­
filling this requirement may be taken as a basis for the 
work that is to follow, and it will be understood that the 
symbols al7bua2,b2 refer to the coefficients in such a trans­
formation. 

With this understanding, it is seen at once that 

J x \ = J J ( a i ?+ biti)2<D(C,rj)d$dri = al +hi, 

J 2 2 , 7 2 

yy = a2 + b2, 
I xycp = J I («i£ + M)(«a£ + M)0(£>*?)<fê*7 

= aia2
Jrbih] 

when the variables of integration are not expressly indicated, 
it is intended always that the integration shall be performed 
with regard to x and y. The equations (4) serve, when the 
function <p is given, to associate x and y with two points 
Px and P2 in the (?, rj)-plane, having the coordinates (a±, bt) 
and {a2, b2) respectively. Because of the degree of arbitra­
riness retained by the coefficients in (4), the association may 

* To repeat the familiar proof, 

«ï + fil « i« a +0iA 
l«i«a+/*i/»« «Î + fil 

5* 

« 1 fil 

«2 Pi 

2 
«1 fill 

«2 fiJ 
| « 1 a2 

\fil fit 

1 0 

0 1 
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be carried out in an infinite variety of ways, but in all 
cases the expressions 

which are themselves independent of the coefficients, represent 
respectively the distance OPx, the distance OP2, and the 
cosine of the angle PxOP2. The last expression, in case 
jxy> = j yep = 0, is the coefficient of correlation between 
two variables x and y distributed according to the frequency 
function y>, and a geometric meaning has thus been assigned 
to the correlation coefficient. 

The correspondence that has been established renders 
it possible to prove analytical theorems involving a frequency 
function by the mere interpretation of geometric facts. 
Consider, for example, the problem of determining a co­
efficient I so as to make the value of the integral / ( y — l x ) \ 
a minimum. Since this integral is equal to 

[{a2 — U^ + (b2-XbM?®(hn)dH% 

it is the square of the distance between the points (Xau A&j) 
and (a2, b2). The points {au b±) and (a2, b2) have already been 
denoted by Px and P 2 ; let Q stand for the point (ha^hbi), 
and 0 for the angle PiOP2. Then Q is on the line OPl9 

the distances OQ and OPt being in the ratio of I to 1. 
In order that the distance QP2 may be a minimum, Q must 
be the foot of the perpendicular from P2 on OP±. This 
means that OQ = OP2 cos 0, and 

A = -2L 
OP1 

0JP2 a 
= - = ^ - C O S 0 

OP, 

y J V f I xy<p I xyq> 

j/J*»,» ff/a*?) (JVy) fe* 
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If jx<p = fycp = 0, the value of JV being 1 throughout, 
the quantities 

a = y Jafy, * = \ jy29 

are the standard deviations of x and y respectively, while, 
as already mentioned, cos 0 = r is the coefficient of corre­
lation of # and y. With this notation, it is seen that 
;. = (r/a)r. The minimum distance QP2 is equal to 

OP^sinfl = T V I — r2. 

The familiar determination of the coefficient of regression 
of ?/ on a? and of the root-mean-square deviation from the 
line of regression will be recognized at once. 

3. Frequency Functions in Three Variables. The geometric 
treatment can be extended to three dimensions without 
difficulty. To begin, as before, with a preliminary inspection 
of a special case, let <p(x,y,g) be defined throughout a finite 
region of space, continuous, everywhere positive or zero, 
not identically zero, and so constituted that 

(6) I xycp = I xzy = J yzy = 0, 

J <f = I x \ = I y2<p = J z \ = 1, 

the integrals being triple integrals with regard to x, y, 
and z, extended over the region of definition of y. If Pi 
and P2 are two points in space, with coordinates (ai,6i,Ci) 
and (a2,&2,c2), 0 being the origin, it is found directly that 
the squares of the distances 0P1 ,0P2 ,PiPa are represented 
by the integrals 

I [(02— <h)x + (b2— h)y + (Ci— Ci)s]V 
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A corresponding evaluation of the quotient 

J (axx + \y + c±z) (a2x + hy + c2z) 9 

]/ J (aix + lxy + erf)*? J/ J (a2x + % + c2z) », 

gives the familiar formula of solid analytic geometry for 
the cosine of the angle PiOP2. 

If the last three equations in (6) are replaced by 

|/J;zV = a, ]/ jy29 =*, ]/ y \ = », 

the unit values of the integrals may be restored by setting 

£ = x/(f, r\= ylv, t = z/w, Moo<p(x, y, z) = 0>(£, % t). 

If y> is not subject to (6) at all, except for the condition 
j<P = 1, a reduction may be performed as follows. Let 

\ Ja'V = <*'? JA x =x, y Jx y ^= a , Jxycp = pu, 

V = y—(p'i2/<ïf2)x', J/ J y'\p = r', J a/sy = jpis, J j/sy =J>23, 

^ = ^-(pj8/tf'V-(^/^V, V / A = «', 

9>(x,y,e) = y(a/,y',s'). 

It is readily verified that 

I I I x'y'tpix'\ yrj zf)dxfdyrdz' 

= I I I xfzf<j>(x', y', zf)dxfdyfdz' 

= = I I I y'z'^>(x', yf, z')dx'dy'dz' = 0. 

It remains to set 

crr'œ'y(x',y',z') = a>(£,rç,t), 
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and the desired reduction is accomplished; that is, d) has 
the properties that 

(7) 

fOdUndt 

Let it be understood henceforth that x, y, z are related 
to a new set of variables £, % f, by equations of the form 

x = Oi? + M + Pif, 
y = a2

tê + b2V + c2t7 

so that the conditions (7) are satisfied, when d>(§, % £) is 
equal to <p(#, y, z) multiplied by the absolute value of the 
determinant of the coefficients. The coefficients may be 
determined by the calculation of the preceding paragraph, 
or in any one of an infinite variety of other ways, the 
passage from one determination to another amounting to 
a rotation of coordinate axes, with or without a reflection 
in one of the coordinate planes. Let the point with coor­
dinates (en, hi, a) be denoted by Pi, for i = 1, 2, 3, and 
the origin, as usual, by 0. The expressions (5) once more 
represent the distances 0PX and 0P2 and the cosine of the 
angle PiOP2, while the corresponding expressions obtained 
by permuting the variables are to be similarly interpreted, 

A foundation is thus laid for geometric reasoning on a 
more extensive scale. If TJ and V are any two linear 
combinations of x, y, and z, 

= 1, 

= j J j KQdUnfà 

= ) I I *lWd£dfid£ = 0, 

= J J Itfomtldt 

= J J j pOdSdydt = 1. 

sss 
HI 
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U = IxX-^-mxy-^-rixZ, V= l2x-\-m2y-\-n2z, 

they can be expressed in the form 

U = AiS + Btf + dt, V= A2Ç + B*ri+C& 

and then ƒ U2<p is the square of the distance of the point 
(A1,B1,CX) from the origin, (jUVy)IV(fU2cp)(fV2f) is the 
cosine of the angle subtended at the origin by the points 
(Al9Bl9Ci) and A2,B2,C2), and so on. Any linear combi­
nation of x, y, and z corresponds to a definite point in three-
dimensional space. 

Suppose I and fi are determined so as to minimize the 
integrals $(y—locfy and J(z—fixfy. The points Q2 and Q3 

corresponding to Xx and fix are on the line OPu where 
this line is met by the perpendiculars from P2 and P3 

respectively. Let u = y—Xx, v = z—fix; the coordinates 
of the points corresponding to u and v are the components 
of the vectors Q2P2 and QsPg. Consequently the expression 
(juvy)/]f(fii2<p)(fv2<p) is equal to the cosine of the dihedral 
angle between the planes P\OP2 and BxOP^ If Jxy = $yy 
= §z<p = 0? it is at the same time the coefficient of partial 
correlation between y and z. The geometric figure is exactly 
the same as in the case of a finite number of observations, 
and there is no need of repeating the steps by which the 
coefficients of partial correlation and of double correlation 
are calculated in terms of ordinary correlation coefficients.* 
It may be verified that the determinants 

I x2y I xycp 

J yxf I y\ 

represent respectively the square of the area of the 

I x2cp I xycp I xz<p 

J yxy J y\ I yzy 

I zxy I zyy I z2y 

* Cf. the papers on The trigonometry of correlation and The elementary 
geometry of function space, previously cited. 
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parallelogram determined by OPx and OP2, and the square 
of the volume of the parallelepiped determined by OPu 

OP2, and OP3. The values of the determinants, which 
have the character of Gramian determinants, are therefore 
always positive.* 

4. Functions Defined over an Infinite Bange. As was 
said in the introduction, it is not the purpose of this paper 
to enter into an elaborate discussion of the questions of 
convergence that arise if the frequency functions considered 
are supposed defined and different from zero over an infinite 
range, in a highly arbitrary manner. There is no difficulty, 
however, in arriving at a formulation general enough to 
cover the most important statistical applications. Suppose, 
for example (to concentrate attention on the case of three 
variables), that 

for all values of x, y, and z, K being a constant. Then 
all the integrals that appear in the course of the discussion 
are absolutely convergent, so that the integral over a finite 
region approaches a definite limit as the boundary of the 
region recedes to infinity in any way whatever. To justify 
the transformations of variable in the infinite integrals, it 
is sufficient to carry out the transformations over corre­
sponding finite regions, a sphere, for example, in one set 
of variables, and an ellipsoid in the other set, and then 
to allow these regions to expand to infinity. Furthermore, 
though this is not essential to the argument, all the triple 
integrals can be evaluated as iterated integrals. 

THE UNIVERSITY OF MINNESOTA 

* The fact that the two-rowed determinant is positive is equivalent 
to the fact that the value of a coefficient of correlation is always 
between —1 and + 1 . It is to be noticed that the extreme values + 1 
and — 1 can not occur, under the hypotheses on which this paper has 
been based; a frequency function corresponding to perfect positive or 
negative correlation is not continuous as a function of the two or 
more variables involved. 


