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ALGEBRAS AND THEIR ARITHMETICS* 
BY L. E. DICKSON 

1. Introduction. Beginning with Hamilton's discovery of 
quaternions eighty years ago, there has been a widespread 
interest in linear associative algebras, a subject known also 
under the name of hypercomplex numbers. The list of 
investigators in this field includes the following well known 
names: Hamilton, Cayley, Clifford, and Sylvester in England; 
Poincaré and Cartan in France; Weierstrass, Frobenius, 
Lipschitz, Molien, Scheffers, and Study in Germany ; A. Hurwitz 
and DuPasquier in Switzerland; BenjaminPeirce, C. S. Peirce, 
Taber, Wedderburn, Hazlett, and others in America. 

Needed guides to the extensive literature on this subject 
are furnished by the recent book by Scorza and the two 
books by the writer. Many of the papers, especially the 
older ones, contain serious errors and obscurities. Again, 
a large proportion of the papers are now obsolete, since 
they either treat only special algebras or fail in an attempt 
to give a general theory, and especially since they deal only 
with algebras over the field of all complex numbers. But 
the results obtained for this very special case have since 
been extended to algebras over any field, and it is the latter 
general subject which is the really important one both for 
algebra and for the theory of numbers. 

* A Report presented to the Society, by invitation of the program 
committee, at Cincinnati, December 28, 1923. This Report, the work 
of the author reported in it, and two other papers presented by him 
to the Society at the Cincinnati meetings (see this BULLETIN, page 280 
of this issue) formed the basis for the award to the author of the seventy-
fifth anniversary prize of the American Association for the Advancement 
of Science for the most notable contribution to the advancement of science 
presented at the meetings of that Association and its affiliated societies 
at Cincinnati on December 27, 1923 to January 2, 1924. (See this 
BULLETIN, vol. 30, Nos. 1-2, p. 90.) THE EDITOES. 
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We shall not attempt to give a complete survey of the 
entire subject of algebras, but shall restrict attention to a 
few results on the algebraic side which will be required in 
our account of the chief results in the recent remarkable 
theory of the arithmetics of algebras. 

Instead of presenting the formal definition of a general 
algebra by postulates, we shall employ typical illustrations. 

2. Algebra of Complex Numbers. A complex number 
a • 1 + bi is said to have the real coordinates a and b and 
the basal units 1 and i. All complex numbers form an 
algebra of order 2 over the field of all real numbers. We 
obtain another algebra by restricting the coordinates a 
and b to rational values; it is an algebra of order 2 over 
the field composed of all rational numbers. In general, a 
set of real or complex numbers is called a field if the sum, 
difference, product, and quotient (except by zero) of any 
two numbers of the set are also numbers of the set. 

3. Algebra of Matrices. We shall now define a more 
typical algebra which plays an important rôle in our further 
discussion. Consider 2-rowed square matrices 

whose elements a, b, c, d, etc., are numbers of any chosen 
field F. We define the sum and the product of these 
matrices to be 

, (a + a b + fi\ (acc + by a0 + bd\ 
m + " = \c + r d + ô)> mf*=(ca + dy cft + dô)> 

If k is any number of the field F, we call 
, Ika kb\ 

\kc kd] 

the scalar product of the number k and the matrix m. Con­
sider the four special matrices 

/ l 0\ (0 1\ /0 0\ (0 0\ 
*11= lo oj' 6 l 2 = \o oj' ' 2 1 = li o)' e 2 2 = (o i)' 
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Then the foregoing matrix m can be expressed in the form 

(o O P H o d) ~ a 6 l l + ^12+^21+^22. 

Hence the algebra formed of all 2-rowed matrices with 
elements in the field F has the four basal units en, 1̂2? #21? 2̂2 
and is of order 4. 

Similarly, all w-rowed square matrices with elements in 
a field F form an algebra of order n2, called a simple 
matric algebra* 

In the definition of any algebra over any field F, we 
employ three operations called addition, multiplication, 
and scalar multiplication, which are assumed to have pro­
perties entirely analogous to those holding for the fore­
going three operations on matrices. 

4. 

1= 

Quaternions. 

= (oî)'*' = 

The four special matrices 

IV=i 
\ 0 

satisfy the relations 

i2 = 

and 

= ƒ = F = —I, ij = 

are the basal units of 

xI-\-y\ 

-V=ï)'j== 

k = ij = 

k — —ji9 ki 

quaternions 

' + y + wk. 

•u 
• ( * = 

=j = 
jk = 

J) 
H 

: i -

? 

V-
0 

-ik, 

* ) 

-#> 

Since matrix I plays the rôle of unity, it is usually denoted 
by 1. Quaternions may therefore be obtained very simply 
from matrices. Only when the field F contains V—1 is 
the present algebra of quaternions over the field F the 
same as the foregoing simple matric algebra of order 4. 

5. Définitions. Let F be a field all of whose numbers 
are real. Consider any quaternion q = x-\-yi-\-zj-\-wk 
whose four coordinates belong to F and are not all zero. 
It is readily verified that the product of q by its conjugate 
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q' = x—yi — zj — wk is N = x2 + y2-\-z*-\-w2. Since 
x, . . . , w are not all zero, we have N ^ 0. Evidently q 
has the inverse q~l = (l/N)q', which is a quaternion 
with coordinates in F. Then the equation xq = r has 
the solution x = rq~~1

J while qy = r has the solution 
y = g"~V. Hence our algebra of all quaternions over 
the real field F is an example of a division algebra, in 
which each of the two kinds of division (except by zero) 
can always be performed uniquely. 

The special quaternions x + yi form an algebra of order 
2 called a sub-algebra of the algebra of all quaternions. 

A sub-algebra I of an algebra A is called invariant in 
A if the product of every element of I by every element 
of A is an element of J, and if likewise the product of 
every element of A by every element of I is in I. 

In case A has no invariant sub-algebra other than itself, 
A is called a simple algebra. It is a fundamental theorem 
that every simple algebra A is a direct product of a simple 
matric algebra and a division algebra D; this may be 
understood to mean that all elements of A can be ex­
pressed as matrices whose elements belong to D. 

An element is called nilpotent if some power of it is 
zero. For example, the square of the foregoing matrix 

613 = (o o) 

is the matrix zero all four of whose elements are zero, 
whence e12 is nilpotent. 

An algebra is called nilpotent if all of its elements are 
nilpotent. A semi-simple algebra is one which has no nil-
potent invariant sub-algebra. 

An algebra A is said to be the sum of two sub-algebras 
B and C if every element of A can be expressed as a 
sum of an element of B and an element of C. If also 
the product of every element of B and every element of 
C is zero, and vice versa, and if B and C have in common 
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only the element zero, then A is called the direct sum of 
B and G 

Every semi-simple algebra is either simple or is a 
direct sum of simple algebras, and conversely. 

The principal theorem on algebras states that every 
algebra which is neither nilpotent nor semi-simple is the 
sum of its unique maximal nilpotent invariant sub-algebra 
and a semi-simple sub-algebra. 

6. Evolution of the Arithmetic of Algebras. We have 
now defined those terms and stated those theorems con­
cerning algebras which are needed in our account of the 
arithmetic of algebras. That subject has been surprisingly 
slow in its evolution. Quite naturally the arithmetic of 
quaternions received attention next to the arithmetic of 
complex integers. 

Lipschitz, in his book of 1886, called a quaternion in­
tegral if and only if its four coordinates are all ordinary 
integers. But his theory was extremely complicated; it 
was not a success since such integral quaternions do not 
obey the essential laws of divisibility of ordinary integers. 
For example, there does not exist a greatest common left 
divisor of 2 and q = 1 + i + i + ft. For, the only factors 
of 2 are the products of 2, 1, 1 + i, 1 + i or l-\-k by the 
various units ± 1 , ± i , ± j , ±ft (i. e., divisors of unity); 
while the only factors of q are the products of q, 1, 1+2, 
1 + ƒ or 1 + ft by the units. But no one of the four common 
factors listed is divisible by all of the others since 1 + i, 
\-\-j and 1+ft are indecomposable. 

But A. Hurwitz in his memoir of 1896 and book of 1919 
obtained a wholly satisfactory arithmetic of quaternions. 
He called a quaternion integral if its coordinates are either 
all integers or all halves of odd integers, and proved that 
the essential laws of divisibility of ordinary integers hold 
also for integral quaternions. In particular, there exists 
a greatest common left (or right) divisor; that of 2 and q is 2 
since q is the product of 2 by the integral quaternion f q. 

file:///-/-j
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7. Postulational Formulation. Although Hurwitz stated 
his definition only for the case of quaternions, it may be 
formulated for any associative algebra A over the field of 
rational numbers. The integral elements of A are defined 
to be the elements which belong to a set of elements having 
the following four properties: 

C (closure): The sum, difference, and product of any two 
elements of the set are also elements of the set. 

B (basis): The set has a finite lasts (i. e., contains elements 
&i, . . . , bk such that every element of the set is a linear com­
bination of the Vs with ordinary integral coefficients). 

U': The set contains the basal units of A. 
M (maximal): The set is a maximal set (i. e., is not con­

tained in a larger set having properties C, B, XJr). 
Note that Lipschitz's integral quaternions with integral 

coordinates have the properties C, B, TJf, while Hurwitz's 
integral quaternions have also property M. That a maximal 
set is superior to other sets is in accord with the history 
of the evolution of our number system and our experience 
in various branches of mathematics. 

Du Pasquier, a pupil of Hurwitz, published during the 
past 15 years many papers in which he modified Hurwitz's 
definition by replacing Uf by the milder assumption U that 
the set contains the modulus 1 which plays the rôle of unity 
in multiplication. 

8. Former Definitions Unsatisfactory. But the definitions 
by Hurwitz and Du Pasquier are both unsatisfactory in 
general. This fact will be illustrated for the special algebra 
having two basal units 1 and e, where e2 = 0. 

Under Du Pasquier's definition, any set of elements with 
properties B and U has a basis of the form 1, q = r-\-se, 
where r and s are rational numbers and s ^ 0. Since q2 

belongs to the set by property C, we must have q2 = a-\-bq, 
where a and b are ordinary integers. Thus 

r2-\-2rse = a-\-b(r-\-se), r2 = a-\-br, 2rs — bs, 

whence 2r = b, r2 = a-\-2r-r, r2 = —a. Thus r is an 
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integer. We may therefore replace the initial basis 1, q 
by 1, q—r = se. Our set, designated by (1? se), is evidently 
contained in the larger set (1, \se), which in turn is con­
tained in the still larger set (1, f se), etc., where each such 
set has properties C, B, U. In other words, there does not 
exist a maximal set, so that the algebra does not possess 
integral elements, and the definition of integral elements is 
unsatisfactory. In such a case, Du Pasquier suggested that 
we omit the desirable requirement M and define the integral 
elements to be those of an arbitrarily chosen one of the 
infinitude of sets (1, se). But it has been definitely proved 
by the writer* that factorization into indecomposable in­
tegral elements is then not unique and cannot be made 
unique by the introduction of ideals however defined. 

These insurmountable difficulties arise also under the 
definition by Hurwitz, which imposes on the foregoing sets 
(1, se) the condition that s be the reciprocal of an integer, 
so that the basal unit e shall belong to the set. 

9. Final Theory. Rank-Equation Postulate. The writer 
has recently published a satisfactory theory of the integral 
elements of any rational algebra in his book Algebras and 
Their Arithmetics (University of Chicago Press). He employs 
postulates C, U, M and (in place of B) the following as­
sumption. 

B (rank equation): For every element of the set, the coeffi­
cients of the rank equation are all ordinary integers. 

If £i, . . . , ?w are independent variables in the field of 
rational numbers, the element x = ^±u± + • • • + ïnUn of a 
rational algebra A having the basal units u±. . . . , un is a 
root of a uniquely determined rank equation 

in which cu . . . , cr are polynomials in £i, . . . , gw with 
rational coefficients, while x is not a root of an equation 

* BULLETIN, vol. 28 (1922), pp. 438-442; JOURNAL DE MATHÉ­
MATIQUES, (9), vol. 2 (1923), pp. 281-326. 
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of degree less than r all of whose coefficients are such 
polynomials. For example, the quaternion a + fii-\-yj-\- àk 
and its conjugate a—fit—yj—ôk are roots of 

w2—2ac0 + (a2 + j&* + y* + d2) = 0, 

which is the rank equation if a, £, y9 d are independent 
variables in the field of rational numbers. 

As a first justification of our new definition of the integral 
elements of any algebra A, note that for the case in which 
A is any algebraic field, there is a unique set of its elements 
which have properties C, U, R and M, and this set coin­
cides with the totality of integral algebraic numbers of the 
field. In other words, the new theory is a direct general­
ization of the classic theory of algebraic numbers. 

Next, the serious difficulties observed in the foregoing 
algebra with the basal units 1 and e entirely disappear 
under the new definition. For x = a-\-be, we evidently 
have (x—a)2 = 0, which is the rank equation if a and b 
are independent variables in the field of rational numbers. 
Its coefficients are integers if and only if a is an integer. 
Evidently the unique maximal set of elements having pro­
perties C, £7, B is composed of all the x = a + be in which 
a is an integer and b is rational. These elements x are 
therefore the integral elements of the algebra. For any 
rational number k, the product of the integral elements 
u = l-\-ke and 1—ke is 1, whence each is called a unit 
Let a ^ 0 and choose k — —hi a. Then xu = a. The product 
of x by any unit u is said to be associated with x. Hence 
the integral elements are here associated with the ordinary 
integers a, so that the arithmetic of our algebra is asso­
ciated with (and reduces to) the arithmetic of ordinary 
integers. 

Note that our set of integral elements is the aggregate 
of the infinitude of non-maximal sets (l9se) of Du Pasquier. 
Our satisfactory set may therefore by derived by a suitable 
enlargement of any one of Du Pasquier's unsatisfactory 
sets. Similarly, Hurwitz obtained his satisfactory set of 
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integral quaternions by a suitable enlargement of Lipschitz's 
unsatisfactory set. There are many instances in the history 
of mathematics where success has been achieved by the 
principle of enlargement; examples are the growth of our 
number system and the introduction of ideals in the theory 
of algebraic numbers. 

Note also that our integral elements a + be do not have 
a finite basis, since b ranges over all rational numbers, and 
hence do not form a set of integral elements according to 
the definition either of Hurwitz or Du Pasquier. Thus the 
writer's conception of integral elements is entirely diffe­
rent from the conceptions of Hurwitz and Du Pasquier. 
It was only after long experimentation and tests of various 
kinds that the writer became fully convinced that his 
conception of the proper subject matter of arithmetics of 
algebras is from every standpoint wholly satisfactory and 
in particular far more desirable than all earlier conceptions. 
Moreover, the new conception greatly facilitated the develop­
ment of a rich array of fundamental theorems, wholly 
lacking under former conceptions. The resulting remark­
able science of the arithmetics of algebras furnishes the 
final justification of the new conception of the proper subject 
matter. It is obviously more difficult to justify a new 
determination of the proper subject matter of an embryo 
science than to compare different foundations of an estab­
lished science. 

10. Theorems on Arithmetics. According to the principal 
theorem on algebras stated above, any rational algebra A 
is a sum of its maximal nilpotent invariant sub-algebra N 
and a semi-simple sub-algebra S. The fundamental theorem 
on arithmetics states that the arithmetic of A is associated 
with that of 8 in the sense that every integral element 
(whose determinant is not zero) of A is the product of an 
integral element of S by a unit. For, all integral elements 
x of A are obtained by assigning values to the coordinates 
of those basal units which belong to S, such that the 
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^-component of x is an integral element of S, and assigning 
arbitrary rational values to the coordinates of the basal 
units which belong to N. Furthermore we can choose an 
element v of N such that the product of x by the unit 
1 + v reduces to the component of x which belongs to S. 
In other words, the effect of multiplying x by a suitably 
chosen unit is to suppress the nilpotent component belong­
ing to N (viz., be in our above example). 

Next, the problem of the arithmetic of a semi-simple 
algebra S reduces to that of the arithmetics of simple 
algebras. For, we saw that 8 is a direct sum of simple 
algebras 8l9 S2, . . . , so that each element a of 8 is a sum 
of components cr1? ff2, . . . belonging to Sl9 S2, . . . respect­
ively. It is an important theorem that when <s is an integral 
element of 8, each fy is an integral element of Si, and 
conversely. Moreover, the divisibility properties for 8 follow 
at once from those of the component algebras Si. 

We saw that the elements of any simple algebra 2 can 
be expressed as matrices whose elements range over the 
same division algebra D. It can be proved that the in­
tegral elements of 2 are those matrices whose elements 
range over the integral numbers of D, and conversely. 

Let-D be such that its integral numbers possess a division 
process yielding always a remainder whose norm is numeri­
cally less than the norm of the divisor. We may then 
establish a theory of reduction and equivalence of matrices 
whose elements are integral numbers of D. The resulting 
theory is a direct generalization of the classic theory of 
matrices whose elements are ordinary integers. In that 
case factorization into prime matrices is unique apart from 
unit factors. In our more general case, each matrix is the 
product of units and a diagonal matrix having exclusively 
zeros outside the diagonal, so that the arithmetic is asso­
ciated with the simpler arithmetic of diagonal matrices. 

We have therefore reduced the study of arithmetics of 
all rational algebras to the study of arithmetics of simple 
algebras, i. e., of matric algebras over a division algebra D, 
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and we have completed the latter study when D is of a 
certain type. 

11. Conclusion. Under the new definition, any set of 
integral elements of the same order as the order of the 
rational algebra A has a basis if and only if A is semi-
simple. Hence the new definition is in complete accord with 
the older definitions by Hurwitz and Du Pasquier only in 
the important case of semi-simple algebras. For the 
remaining algebras, the older definitions led to insurmoun­
table difficulties, whereas under the new definition the 
arithmetic of such an algebra is associated with that of 
its semi-simple sub-algebra S, since we may suppress the 
components belonging to its maximal nilpotent invariant 
sub-algebra N. It is fortunate that we can get rid of these 
bizarre nilpotent components since they would interfere 
seriously in applications. Their elimination also greatly 
simplifies the theory. 

The theory of algebraic numbers finds applications only 
to problems involving forms which contain only two variables 
homogeneously and hence can be factored into linear forms. 
This serious limitation may often be removed by employing 
hypercomplex numbers. For example, x2-\-y2-\-z2-{-w2 has 
as factors the quaternion x-\-yi-\-zj-\-ivk and its conjugate. 
Since the new theory of arithmetics of algebras finds applica­
tions to problems involving forms in any number of vari­
ables it furnishes us with an effective new tool for problems 
in algebra and the theory of numbers. 
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