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ON THE APPLICATION OF THE THEORY
OF IDEALS TO DIOPHANTINE ANALYSIS*

BY G. E. WAHLIN

1. Imtroduction. About three yearsagot Professor Dickson
stated a certain conjectured theorem, and he has recently
published a proof of it.:

After having examined a proof of the same theorem by
the author of this article, Professor Dickson suggested the
investigation of a more general equation than the one which
he had considered, and the following pages contain the results
of this investigation.

2. Rings. Let us consider any algebraic number field
1(6) of degree n. Let yy, ¥e,-..., y» be a fundamental
system of integers of %k(6) so that every integer of the
field can be represented by the fundamental form

(1) Tyt xare+ - - -+ Zutn,
in which the x;, xs, ..., 2, are rational integers.

By a ring R in k(6) we understand a set of integers
which is closed with respect to addition, subtraction, and
multiplication, and which contains the rational integers. Let
01, 0z, . . ., 0n be a fundamental system of E. As above, we
shall call
(2) x191+x292+ cee +xn9n
the fundamental form of R. Every element of E is re-
presented once and only once by (2) when the axy, xs, - -+, xp
are given rational integral values.

Since ¢4, 02, ..., 0n are integers in k(#), they can be
represented by (1), and we shall suppose that

(B)  ei=rari-troret - +ruin, (i=1,2,...,n).

* Presented to the Society, December 29, 1923.
T L. E. Dickson, 4 newmethod in Diophantine analysis, this BULLETIN,
vol. 27, No. 8 (May, 1921), p. 353.

I L. E. Dickson, Integral solutions of x* — my* = zw, this BULLETIN,
vol. 29, No. 10 (Dec., 1923), p. 464.
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The absolute value of the determinant || of the system (3)
shall be called the ¢ndex of the ring, and shall be denoted
by 4. Since any product of integers of F belongs to A
the product

Qil.ggz...gzn, 52':?__0) (i:],?,...,n)
can be represented by (2), and we shall write
@) of-er---ep =0 ,0TC% oot - +CE o

This equation uniquely defines the rational integers C;g2 8

Let us next consider any % integers «', &”, ..., o from
R, and let

a® = 01501 -+ a2i02+ - - - + Cnign, (i=1,2,...,k)
We may then write the product

(5) a/ : a” e a(k) ZZBSNL . .Snggl : Qgﬂ T Qﬁ/n’
where the summation extends over all terms for which
si+s+ - +sw=k and

Boss...oa=20011 - - - (g, Azi, - - - O,

© i -
s, nap

That is, Bs,s,...s, is the sum of all possible products formed
by taking s, elements from the first column, s; from the
second, s; from the third, etc., and so chosen that no two
elements belong to the same row in the matrix

11, 21y « vy Ani

12y, A22y « oy Op2
m =0 ... ... ...

A1k, A2ky + o oy Ank

If in (5) we now replace the power-products ¢ - ¢ - - - 03~
by their expressions as furnished by (4), we have

(6) oo’ o) = 4,0 +A292 + .. +Anen,
where .
(7) Ai ZZBS.S, .. 8n g;, ... 8ny

the summation extending over all sy, ss, ..., s, Whose sum is .

The 4;, for whose computation a definite process is thus
given, are rational integers. They will be used in the
application whose consideration is the object of this paper.
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3. Ideals in R. The conductor of a ring is an ideal f in
k(6) such that the product of any integer of %(6) by [
belongs to R.* By a ring ideal we shall understand an ideal
in R as defined by Bachmann.t That is, an ideal 7® of R
is a set of integers of K such that the sum and difference
of ‘any two integers of the set belong to the set; the product
of any integer of the set by any integer of R belongs to
the set; and the greatest common divisor of f and the moduli
thus defined is the ring R.

Let 7® be any ideal of R, and let 8y, 85, ..., Bn be a
fundamental system of 7. Since the 8; belong to R, they
can be represented by the form (2). If we write

(8) Bi = bior+ bis0at - - - + bingn, (i = L,2..., n);
then the norm of IT® in R, which we shall denote by Ng(I®),
is the absolute value of the determinant|bs;|.%

If @ = e,8,+ esfot -+ +eabn is an integer in 7®, and
if we apply (8), we have & = @101+ @20+ - - - + anon, Where

(9) a; — b1i€1+ b2i€2+ oo +bni@n, (Z' - .1, 2, caey n),

whose matrix is the conjugate of that of (8).

In order to distinguish between ideals in R and ideals
in %(6), we shall speak of them as ring ideals and field
ideals, respectively. Principal ring ideals will be designated
by [4], where 4 is an integer of R, and principal field ideals
by {4}, where 4 is an integer of /(6).

To every ideal /% of R there corresponds a field ideal 7
obtained by forming the product of 7™ and the unit ideal
of k&(); and if 7 is any ideal of %(f) which is relatively
prime to f, the numbers of 7 which belong to R constitute
a ring ideal 7® whose corresponding field ideal is 7. The
norm N(I) of I is equal to the norm Ng(Z®) of I® in R.§
The index A of R is divisible by the conductor f of R.|

* Bachmann, Zahlentheorie, p. 136.

+ Bachmann, loc. cit., p. 363.

1 Bachmann, loc. cit., chapter 2, p. 74.
§ Bachmann, loc. cit., chapter 9, No. 2.
|| Bachmann, chapter 4, p. 136.
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Two ideals Ii® and 15 shall be called equivalent when
R contains two integers «, and «; which are relatively prime
to f, and oy {P = o, I¥°.* Equivalent ideals constitute
a class.

For any given ring ideal Z® there is an ideal J® such
that the corresponding field ideal J is relatively prime to
any given field ideal 7" and the product 7®.J® is a prin-
cipal ideal in R.

To prove this, we make use of the fact that an ideal
JP exists, such that JBIE. 7Py — [41], a principal ideal
in Bt Here T} is used to denote the product of the distinct
prime factors of 7' which are relatively prime to f; and 5
is used to denote the corresponding ring ideal.

Let T}, be the product of the distinct prime factors of 7
which are divisors of £. Then J®.7T5% is relatively prime
to 7}. For, since. P and 75® are ideals in R, their product
is an ideal in K. Hence this product is prime to f, and
therefore also to 7, which is a factor of /. There exists
in %(6) an ideal J; which is relatively prime to 7%, such
that Jy-I.f = {A,}.1 Since 4, is divisible by f, it is an
integer in R. I is the field ideal corresponding to the given
ring ideal 7™,

Since 4, and 45 both belong to R, their sum 4, -+ 4, belongs
to R, and since 4, and A, are both divisible by I, there
exists an ideal J® such that I®.J® = [1;+ 1,].§

That 4, is divisible by I® is seen by its definition. More-
over, Ay is divisible by 7 and belongs to B and hence also
to I®; it is therefore divisible by I®., Hence 4,44, is
divisible by I®,

The J® thus defined is such that the corresponding field
ideal J is relatively prime to 7. For, since I®.J® =
[+ 2], by multiplying both members by the unit ideal of
1(6), we have I.J = {i,-}+24;}. Now 4,/I is relatively prime

* Bachmann uses the restricted equivalent in which sgn N(e;)=sgn N(«s).
t Bachmann, loc. cit., p. 398.
1 Bachmann, loc. cit., p. 221.
§ Bachmann, loc. cit., p. 369.
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to 7, and is divisible by 7%, and 2,/I is relatively prime
to 7, and is divisible by 7}. Hence, if p is any prime factor
of 7" and hence a factor of 7y or 7%, either 2, or 4, is
divisible by Ip, but not both. Hence their sum is not divisible
by Ip, and therefore {4,445}/ is not divisible by any prime
factor of 7. It follows that J is relatively prime to 7. In
the application to Diophantine equations this theorem will
be used with 7= {A}.

4. Decomposable Forms. If a8y +xsfo+ -+ -+ xnBy is the
fundamental form of the ideal 7%, then N(x8,+ 28+ - - -
+ 2,8, is a form of degree » in the n variables x, z,, . .., Zn,
with rational integral coefficients. The highest common factor
of the coefficient of this form is the norm of the ideal 7®
in R. Hence
(10) N(xiBi-+xeBo+ - - -+ xnBn) = Nr(I®) F(x,9, . .0y 20),
where F'(xy, %3, ..., 2,) is a unit form decomposable in R.*

The following theorem is a modified form of one given
by Bachmann.t The modifications are made so as to apply
to ideals in R, and also for the equivalence as we have
defined it.

If J® 4s any ideal of R and F(xy, %, . .., %) is a unit
Jorm obtained as above from an ideal I™® of the class reci-
procal to that of JB, then there exist rational integers e,
€+« v, ny such that Nr(J®) = | Fley, e, . . ., en)|; and, con-
versely, any rational integer Fey, ey, . . ., en) vepresented by
the decomposable form F(xy, s, . . ., Zy) is tn absolute value
the norm of an ideal of the class reciprocal to that of I®
provided e;81-+ eaBs+t- -+ enBn is prime to f.

Let 8y, By, ..., B, be the fundamental system of 7® from
which the form F'(x,, s, ..., &,) is obtained, and let 7(®J®
= [y]. Then y = e;81+esBe+ - -- + enBn, and
| N(7) | = Nr(I®) . Np(J®) = N(e181+esBot - - - +enBu)

== NR(I(R)) I I'T(GM €2y + v vy en) ’y

Nr(J®) = !F(ely €y + v vy en)‘

ok Bachmann, loc. cit., chapter 10, No. 6.
+ Bachmann, loc. cit., p. 429.

and hence
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Conversely, it F'(e;, e, ..., €x) is any rational integer
represented by F'(z;, 2, ..., ,) corresponding to the ring
ideal I, then

NR(I(R))F(&, N N(eBi+eBo+ - - - +euBn).
But if e84 e+ - - +enBn is prime to f, [eiBi+ ey
+ ... +enBy] is a principal ideal in R; and, since it is
divisible by 7®, there exists in the reciprocal class an ideal
JiF such that

T TP = [eBi+ et -+ + enBul.
Hence we may write
l NieBi+ -« - 4-eunbn) I = NR(J{R)) NR(I(R)),
whence it follows that
NR(J](_R)) :F(el, oy v v vy en)-

If e,8,+ esBs+ - - - + enBy is not prime to F' and if 7 is the
field ideal corresponding to I®, then

{J’} = {61/31+ et - - - —}—enﬂn}
is divisible by Z, and {y}/I = J; is a field ideal which is
not relatively prime to /. The method used above will show
that the absolute value of F'(ey, ¢, . . ., €s) is the norm of J;.

5. Application to Diophantine Equations. We shall now
turn our attention to the application of the foregoing facts
regarding rings and ring ideals to the solution in rational
integers &, &, ..., &) Uy, Us, . - ., Up—o Of the equation
(11) N(E101+ Ea0e+ -+ - + En0n) = Uy~ Us -+ Up—2,
where as before ¢y, 0s, ..., 0n is a fundamental system of
any ring R in (6).

Let us suppose that we have a set of integers satis-
fying (11). Since ¢, 05, ..., 0 is a fundamental system
of R, v = &0+ &0+ -+ +&won is an integer of %(6).
We shall suppose it resolved into its ideal prime factors.
There are s distinct factors. We shall denote them by
Pi, Pay - - -5 Ps. Liet us suppose that the first s; of these are
relatively prime to /. Let pfﬂ be the highest power of p;
which is a factor of y and whose norm is a factor of uy;
Pk the highest power of p, which is a factor of y/pf and

10
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whose norm is a factor of us; plm the highest power of p;
which is a divisor of 7/]0 244 and whose norm is a divisor
of ug; and so on, until finally ]oz”‘—2 is the highest power
of p, which is a divisor of ;//10’1‘”r Aot +Ar—s and whose
norm is a factor of wx—o.

We next cons1der the prime ideal p, in the same way,
and we let p‘," be the highest power of p, which is a lelsor
of y and whose norm is a divisor of ul/N(plﬂ), p2’= the
highest power of p, which is a divisor of 7/102 and whose
norm is a divisor of ug/N(p u): and we continue in this
way until finally p? Asx—2 i the highest power of ps, which is a
divisor of ;f/p’]ﬁ"%x2Jr ~+44—3 and whose norm is a divisor of
W 2/N(10/11k 2, sz 2, psa—-llk 2)

‘We shall now write
P= p'l“‘ p2 p’l”' (i=1,2,..., k—2).
From the construction of the P;, we see that y is divisible

by the product Py - P;--. Py, and that u; is divisible by
N(P;). We shall therefore write

{r)
=R P

and
i = py - N(P).
Let us next write Q = Py—1- Px where Pj is the largest
factor of @ all of whose prime divisors are divisors of f.
We then have
{r} =P P Py

where Py, P, ..., Py,—1 are prime to f, and Py contains no
prime factor excepting factors of /. By (11), we have then

IN(Y) l = N(P,)- N(P)--- N(Pp) = iul cUg - 'Mlc—z\
= | gy - pg -+ - pp—g | N(Py) - N(Py) - - - N(Pp—s).
Hence
N(Py—1) - N(Py) = |M1 s Mg Up—2 |
Let us separate each w; into two factors wi and wi such
that
N(Pues) = | - - - - pha |,
N(Py) = | - p3 - - - pii—s |
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Since the Py, P, ..., Py—1, are all relatively prime to f,
to each P;, (i<<k), there corresponds a ring ideal whose
norm in the ring is equal to the norm of P; in %(6). Let
P pe the ring ideal corresponding to P;. Let I® be an
ideal from the reciprocal class. According to § 3, I® can
be so chosen that the corresponding field ideal Z; is rela-

tively prime to {A}. We shall suppose that I has been

so chosen. Let 8%, 89, ..., 82 be a fundamental system of
Z‘R’, and let Fy(xy, s, ..., xs) be the corresponding decom-

posable form. Then, by § 4, we have

Ne(P®) = NPy = | B, &0, ..., ) |,
and hence
(12) wi = & pi-pl File e, ..., e),

(=1,2,...,k—2),

where & is 1 or —1. Since I/® and P{® belong to reci-
procal classes, 9. P — [a®), Hence, since [«?] is divi-
sible by IZ-(R), we have

w0 = o) 0o B4 o) B
= 1 011 (2 @2+ - - + i Ony (t=1,2,...,k—1).

Since Py contains no prime factors except such as are factors
of f, let us suppose that J is the smallest field ideal (i. e.,
the field ideal containing the fewest prime factors) whose
product with Py is divisible by f, and let M; be the smallest
rational integer which is divisible by J. Let M; = N(I),
where /=1, - 1+« Ij—1.

The ideal 7 is relatively prime to the principal ideal {A}.
Hence, since A is a rational integer, M, and A are relatively
prime. Since M, is divisible by Z, we can choose I;; such
that 7. I = {M,}, and I} is then relatively prime to A, and
hence also to f, which is a divisor of A.

Since {y} = P, - Py --- P, P; belongs to the class reci-
procal to that of P . P,--- Py—. But I belongs to the
class reciprocal to that of P, - Py --- Py,—1. Hence Py and 1
belong to the same class, and P and I belong to reci-
procal classes. Therefore Prli = {a®}.

10*
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Let us now write e =ao .&"” ... a®=D.g®. 3. Since
™M, is divisible by JPy, it is divisible by f; and hence
« is an integer in R. In fact, «®.M; belongs to R, and
we may therefore write

a®. My = o1+ aor2+ - - - + Anidn.
Moreover

(@) =Py -Pye- Pl Iy - Do My = {7 MM, },

and hence « and yM; M, differ only by a factor which is
a unit in %(@). Then let us write ¢ = Ey. M;-M,;. But
since a®M; is divisible by f, E.a®.M; is also divisible
by f, and hence belongs to R. Then, if we put Ea® = a®,
we may write

MEa® = M1e® = a13,01 -+ agga+ « - + + anion;
and since {a®} = {a«®}, we have Ppli = {«®}, and
a=cao a" . a®M, = y.M -M,.
We therefore have
M My = 11{1M2(§191 + &300 + - - - + Engn)

= H(dn’(h + a2092+ - - -+ anion),

and using the notations of § 2, we have

A;

M- My
Here the A4; are polynomials in the au, (j=1,2, ..., n;
i=1,2,..., k), which upon application of (9) to the ele-
ments standing in the first z—2 rows of the matrix of § 2
as they occur in the A4; gives an expression for the §&; in
terms of the parameters ef? which occur in the expressions
for u;, and the elements of the last two rows of the matrix
which are implicitely involved in the u; in the factors u;
and pf.

We have thus by means of (12) and (13) obtained a general
form for the solution of (11). We shall next see that all
such expressions, when the parameters are given rational
integral values, constitute a solution of (11).

Substituting for &, &, ..., &; 41, us, . . ., ux—o their values

(13) E— (i=1,2,...,m)
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as given by (12) and (13) in (11), we have the equation

Ndsor -+ - +4Anow) 4 . ‘
101 SR ndn) __ H el Fie®, e, . . ., ).
MI'M2 i=—1

(14)

Since
My =1-T, N(I) = Ne(I{®), |pi-pih- - - phs | = N&(PE2Y),

and P2, . I{P, = [a(k '"1)], a principal ideal in R, we can
write (14) in the form

(15) N(4i0,+ As@s+ - -+ + Angn) B
= MM Na(T2 s e - - pho—s | [ et Na(Zf)

i==1
><Fz(e(f), . ,eﬁ))
But . .
NelIP)F(el, e, .., &) = NP+ - - +e)87)
= Ma1i01+ i@z + - + - + Anion).
Also
Na(Ii20) | wh-ph - - phs | = N(I20) Ne(Pi2)
— N{a®—D} = F—1N(ak—D)
= &p—1N(A1r—101 - Ghor— 102+ + -+ + Ani—100).
Let us suppose that the signs of g, ub, ..., wk—e have been
so chosen that the sign of their product is the same as the
sign of N(e®—Y) and hence &—; = -+ 1. If we now put
& == -6 - E_9, We may write (15) in the form
(16) N(A101 + As0e+- - - +An9n)

k—1

= MMl il il [ [ N (anigr -+ - -+ duign).

Since My = I- 1)y = N(I), we have
My = NI)N(Iy) = MyN(Iy),

and hence My’ ™' = N(Ii). Also|uy-u - ph—s| = N(Pp),
and therefore
(17) MIM3 ™Y\l -« phi—g| = M{'N (I Py = N{M;e®)}

= N{oo1 -+ o202 + - - - + Gun@n}.
For, since M,e™® is divisible by f, it belongs to E. As
above, we shall now affix signs to the w{’ so that the sign
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of their product is the same as the sign of N(e®). Then
we have

MY M3 7 gl - i — s = N(awor+ asa+ - + anion).
We may now write (16) in the form

k
N(4igr 4 Asos + -+ -+ Augn) = & | | N(aio + aziga+- -
=1 +0Lm'9n);

which, by § 1, is seen to be an identity if & = 1.

Hence, with the signs of the w} and p; properly chosen,
and & so chosen that their product is 4 1, all numbers
obtained by (12) and (13) are solutions of (11). We ob-
serve, however, that the expressions for &, &, ..., &, are
fractional in form. Hence we must next determine under
what conditions they are integral, that is, we must determine
what conditions must be imposed on the p; and wi in order
that the solutions shall be integral, or in other words,
that y shall belong to R.

From the development, it follows that, for

— A10y + Asge +- - - + Anon
_lMlMg !
M,-M,-y is an integer in R and
{}’} _ { A0, +A2§2[1—]}-‘—[.2. -+ Anon lf — PPy Py
is a principal ideal of the field. Since the product of any
integer of the field by A is an integer of R, we know that

AiAoy +AsAge + - - -+ Andon
M, M;

is an integer of K. Hence it is equal to Cio; + Copo+---
-+ Cnon, where Cy, Cs, . .., Cy, are rational integers. But the
representation by the fundamental system is unique; hence

Aid .

mM,
Since M, is relatively prime to A, this says that 4; is
divisible by M,; hence (13) will not give fractions with
factors of M, in the denominator.
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‘We have defined J as the smallest ideal whose product
with P is divisible by /, and M; as the smallest rational
integer divisible by J. Let My = Mi-M{’, where M is the
smallest factor of My such that M{P,l; = {y®}, when y®
is an integer of R. If we then choose a® in Py. I}, = {a®}
such that Mie® = M{'y®  which is always possible since

M {y®} = MyPply = MiM{'{a®},

we see that the aw, ask, ..., ane are all multiples of My’
since y™ belongs to K. We thus see that the A4; are all
divisible by M{" and only factors of M{ can occur in the
denominators of the numbers furnished by (13).

In the first part of this article, we have seen that all
integral solutions of (11) can be expressed by (12) and (13).
In the proof as given, for 7 << I the

B + 6’80 4+ 2B = aiior+ anigs + - - -+ nign
were all relatively prime to f. Hence the product

I[1= H (asi01 + azige + - - - + anion)

i==1
is also relatively prime to f. The integer [ | belongs to E.
Hence if

(@01 @zt -+ +awon) [ | =] [ (aviest+azigot-. .. +anign)

i—=1
should have all its coefficients, when it is written as a linear

function of g, 0s, . . . , 0n, divisible by some factor My of
M, = MP. M it would follow that

a0+ w2k92+ N Ankdn 4,r@ 1
M- MY M1l

would be an integer of R.
Hence the product of

Q1101+ o2+ - - - = Ankon U
M- M7

by [ [, or by any integer divisible by f; would be an integer
of R. But [] belongs to R, and the principal ideal [[]]
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is relatively prime to /. Hence there exists an integer '
in R and an integer D in f such that C-[[4 D = 1.*
Since C']] belongs to R, the products of
101+ @102 + - -+ + + Anic0r >
MM !
by C]] and by D, and hence also the sum of these products,
belong to K. Therefore
1101+ (or0a + - -+ Anin u®
MMy !
is an integer in R. But {«®} = Pyl and

Mi-M{ PiI;, = {a1k91+ a2k92+ cee ank@n}-
Hence

Mf*) Puli — {alkgl-{- a21;9ﬂg{ﬂ*ﬁ!-1;’ -+ ko M1(4)},
where the integer determining the principal ideal belongs
to R. But we have assumed that M{ is the smallest factor
of M, such that when MiPrl; = {y®} the y® belongs to R;
hence M{® = M{, i. e., M =1

Therefore M7 will always occur as a denominator in the
numbers furnished by (13), and integral solutions are possible
only when M{ = 1. Consequently, in order to have integral
solutions, «® must be an integer of R.

We have seen that ai, dow, ..., ane are all divisible by
M{'. Hence if we put am/M{ = Cy we shall have

7P = Cixo1-+Corgs+ « - + + Crieon.
The matrix obtained from m in § 2 by replacing the a by
the Cw, (¢ =1, 2, ..., n), shall be denoted by m'.

From the theory of the correspondence between ideals
and decomposable forms, we know that to a class of ideals
corresponds a class of forms. Any form of the class can
be obtained by proper choice of the base of the ideal, from
any ideal of the corresponding class of ideals by the method
of § 4. Moreover, the numbers represented by any form
of the class can be represented by every form of the class.

Let y be any integer of K. Suppose that the principal
field ideal {y} is separated into the product 7'- Py of two field

* Bachmann, loc. cit., p. 367.
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ideals such that 7' is relatively prime to f, and that Pj con-
tains no prime factors except such as are divisors of f. Let
T® pe the ring ideal corresponding to 7. From the recip-
rocal class in R, select an ideal 7® whose corresponding
field ideal 7 is relatively prime to {A}. Let N(I) = M.
Then M, is relatively prime to A, and hence also to f, which
is a divisor of A. Therefore I, = {M;}/1 is relatively prime
to f, and the corresponding ring ideal P belongs to the
class reciprocal to that of I(®,

Since 7™ and T belong to reciprocal classes in R, we
have I®T® — [«]. Multiplying both members of this
equation by the unit ideal of %(6), we have I.7T = {a}.
It is easily seen that I and Py belong to reciprocal classes.
Hence I;-Pr= {y®}. We shall next see that the integer
7® belongs to R.

We have 7'- P, = {y} and y was chosen an integer of R.
Since M, is a rational integer, Myy belongs to R. Since I®
was chosen from the class reciprocal to that of 7® in R, «
belongs to R and is relatively prime to /. We may write

PR A Al L )
and hence we may write y® = Myy/e. Therefore y®.c
belongs to R; and, if a is any integer of [«], 7%.a belongs
to R. Also if b is any integer of f; y®.b belongs to R and
therefore y*(q -+ b) belongs to B. But since [«] is relatively
prime to f, ¢ and b may be so chosen that ¢ 4 b = 1. Hence
7% belongs to R.

We may now sum up the result of the investigation as
follows. ILet k(6) be any algebraic number field of degree =,
and ¢y, 02, . .., 0n a fundamental system of a ring K whose
conductor is f and index A. Select any integer y from R
and separate the principal ideal {y} into two factors 7P,
where 7' is relatively prime to the conductor f; and where
Py contains no prime factors except divisors of f. Let 7'®
be the ring ideal corresponding to 7', and I“® an ideal from
the reciprocal class in & whose corresponding field ideal [ is
relatively prime to {A}. Let M; = N(I), and Iy = M,/I.
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Then
Ly Py = {)’(k)} == {01k91+02k92+ s ‘|‘Onk9n},
since, as we have seen above, y® belongs to R.

Select k—2 rational integers wi’, p3, ..., ui—2, such that
their product has the same sign as N(y™®), and an absolute
value equal to N(Fx).

Next select k—1 ideals I, Is, ..., Ix—1 whose product
is 7. As before, let I/ be the ring ideal corresponding
to L. Let Filay, 2oy ooy ), G=1,2,..., k—2), be the
decomposable forms corresponding to the ideals B =1,
2, ..., k—2). Choose an ideal PP, from the class reci-
procal to that of 2, and let

P IR = [ V] = [aan— 1014 asr—100F -+ -+ ta—10n).
Next select &t—2 rational integers wi, s, ..., wk—s Whose
product has the sign of N(«¢®*—D) and the absolute value
N(Px—1). Then for rational integral ej@, =1,2,...,k—2;
7=1,2,...,m), and &g=-41 or —1, such that & .6 ... &

— -1 the numbers
wi = el Fi(e e - - . 60), (=1,2,---, k—2),

My’

constitute a solution of the equation
N(Eror+ 00 -+ « - - + Engn) =ty -t - - - Up—32.
The A; are computed as in § 2 from the matrix

& (1‘:1’27"'7%)’

11, g1, ey Ont
@12, 22, ey Opo
m’ —_ e e e e e e e e
A1—1y A2k—1y <+ oy Anpk—1
Ciky Col, veey Cnkg

when the a; in the first ~—2 rows of the matrix are ob-
tained from the e}i) by means of k—2 sets of equations such
as (9), one set for each of the ideals I{R), G=12,...,k—2).

By the same method, all solutions of the given Diophan-
tine equation may be obtained.
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