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and conditions (3a)? (3b) become 

(7) A + D^B + G\ AD^=0. 

Hence we find that the most general existent boolean illation B 
which satisfies (1) is given by (2) and (7). 

Our main results may also be stated in the following form : 
The totality of transitive universal relations in a boolean 
algebra is given by (4). The totality of existent transitive 
universal relations is given by 

Axy+Bxyf+Cxy+Dx'y'=0, A + D<B-\-C, AD=0. 
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1. Introduction. Except the classical theorems on the 
total number AT

5 (n) of representations of the integer n a s a 
sum of five integer squares, no explicit results on numbers 
of representations in quinary quadratic forms seem to have 
been obtained.t In general N6(n) is not expressible as a 
function of the real divisors alone of a single integer, but 
when n is a square, N6 (n) is so expressible. This remarkable 
fact was found inductively by Stieltjes for JV£ (p2), p prime, 
and proved for Nb(n

2) by Hurwitz,t who showed that if 
n = 2am, m odd, N6(n*) = 10£8(2*) H(m\ where 

H{m) = [&(p«) —PCCP*"1)] [ W ) - - g W ~ % . . , 
£r (n) being the sum of the rth powers of all the divisors of n, 
and m—paqb... the prime factor resolution of m; by con­
vention H(l) — 1. In the course of his proof he showed that 

£x (m2) + 2 & (m2—22) + 2 & (m2—42) + ... = H(m). 

* Presented to the Society, December 27, 1923. 
f Cf. Bachmann, Zahlentheorie, vol. 4, pp. 565-594. 
I COMPTES RENDUS, vol.98 (1884), pp. 504-7; cf. Dickson's History 

of the Theory of Numbers, vol. 2, p. 311. For quadratic forms in w > 4 
variables, cf. ibid., vol. 3, chap. XI. 
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This identity makes it possible to find numerous theorems 
for the total number N{2am2) of representations of 2am2 in 
a quinary quadratic form other than a sum of five squares 
similar to Hurwitz' for Nh{22am2), viz., N(n) is a function of 
the real divisors alone of a single integer when and only 
when * n = 2a m2, m odd, a > 0, and similarly for the number 
of proper representations. The results are so unexpectedly 
simple that we shall take space in § 3 to give 19 of them, 
or, counting the separate cases according to «, 72. 

2. Theorems on Representations. Henceforth the variables 
x, yj z, t, u may take any integer values ^ 0 ; m, n, a, Jcr are 
constant positive integers, m is odd, n,a>0 are arbitrary, 
kr = 0 when r < 0, and a, b, c, d, e are constant integers $ 0. 

THEOREM I. If the total number of representations of2am 
in the form ax2 + by2 + cz2 + dt2 is ka ?i (m), then the total 
number of representations of2am2 in the form {a, b, c, d, a) 
= ax2+by2+cz2+dt2+2a+2u2 is JeaH(m). 

Let Nf (ri), N(ri) denote respectively the total numbers of 
representations of n in the forms ax2 + by2 + cz2 + dt2, 
ax2-\-by2-\-cz2 ~\-dt2-\-en2. Then, the sum continuing so 
long as the argument of N' is positive, evidently 

N(n) = N'(n) + 2N'(n—el2) + 2N'(n-e22) + ---. 

Ifn = 2am2, e = 2a + 2, the argument of each N* is an odd 
multiple of 2a. Hence 

N{2am2) = fta[£i(m*) + 2£1(m
a — 22) + 2£1(m2—4s)+ . . . ] , 

and the theorem follows by Hurwitz' identity. 
As customary, a representation, in which the G. C. D. of x, 

y, z, t, u is 1 is called proper. To state the number of proper 
representations when the total number is given by Theorem I, 
we need J${m), the Jordan totient of order 2 of m. If 
m = YlPa is the resolution of m into powers of distinct 
primes > 1 , J2 (m) == m 2I | ( l — p~2), J{\) — 1 by convention, 
and J2{m) is the number of sets of two equal or distinct 

* Because in each case it can be shown that N(ri) =.cN6(ri), where 
c is a constant. 
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positive integers < m whose G.C.D. is prime to m. Applying 
the general method of a former paper* to Theorem I, we find 
readily the following result. 

THEOREM II. If the total number of representations 
of 2am2 in the form {a, b, c, d, a) is ka H{m), the num­
ber of proper representations of 2am2 in the same form is 
{ka — ka-z)m J2{m). 

It is obvious tbat precisely similar considerations can 
be applied to any quadratic form in any number of vari­
ables, also to such forms when certain of the variables 
are restricted (examples in § 3 (2), (5)). The discussion 
is limited here to (a, b, c, d, a) because the application 
of the method to the deduction of explicit results for other 
forms presupposes a study of the general class of identities 
of which Hurwitz' is the second simplest example. The 
first such identity concerns the function which gives the 
number of representations of an integer as a sum of two 
squares. In both this and Hurwitz' identity only odd 
divisors enter; in the general case there appear only those 
divisors which are prime to the prime p >̂ 2. 

3. Numbers of Representations. From the way in which 
Theorems I, II are stated it is sufficient for any given 
form (a, b, c, d, a) to record the values of ka and ka = 
ka ka — 2« The values of ka are those which appertain 
to the quaternary form obtained from (a, b, c, d, a) by 
omitting the term in u. They can be found by referring 
to the papers of Liouville and Pepin, t 

The results for quinary forms are given in the following 
list, in which the asterisk (*•) denotes any k with a suffix 
greater than that of the last k in the symbol in which 
the asterisk occurs. Thus (11) states that the total number 

* ANNALS OF MATHEMATICS, (2), vol. 21 (1920), p. 170, § 8. 

t JOURNAL DES MATHÉMATIQUES, (2), vol. 6 (1861), pp. 409, 440; 

vol. 7 (1862), pp. 1, 76, 80, 107, 112, 115, 119, 154, 156, 160, 163, 167; 
(4), vol. 6 (1890), pp. 5-67. 

9 
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of representations of 2am2 (m odd) in the form 

x2 + 2y2 + 2z2 + 4*2 + 2« + 2M" 

is 2, 4, 8, or 24 times H(m) according as 

« = 0, 1, 2 or >• 2. 

(1) (1, 1, 1, 4, o) :[ft„, ft,, ft,, *] = [6,12, 8, 24]. 
(2) (1,1,1,4, a), a; + yodd:&1==8. 
(3) (1,1, 1, 16, «) : [ft,, ft,, h, *] = [6, 12, 8, 24]. 
(4) (1, 1, 2, 2, «) : [ft», ft,, *] = [4, 8, 24]. 
(5) (1, 1, 2, 2, a), œy odd: [ft,, ft,, *] = [4,16, 0]. 
(6) (1,1, 2, 8, a) : [ft,, ft,, ft,, *] = [6,12, 8, 24]. 
(7) (1,1, 4, 4, «): [ft0, ft,, ft,, *] = [4, 4, 8, 24]. 
(8) (1, 1, 4, 16, a): [ft,, ft,, h, *] = [6,12, 8, 24]. 
(9) (1, 1, 8, 8, a) : [ft,, ft,, ft,, * ] = [4, 4, 8, 24]. 

(10) (1, 1, 16, 16, a) :[ft,, ft,, h,*] = [4, 4, 8, 24]. 
(11) (1, 2, 2, 4, a) :1ft,, ft,, ft,, *] = [2, 4, 8, 24]. 
(12) (1, 2, 2, 16, «) : [ft,, ft,, ft4, *] = [6, 12, 8, 24]. 
(13) (1, 2, 4, 8, a) : [ft,, ft,, ft,, *] = [2, 4, 8, 24]. 
(14) (1, 2, 8,16, a) : [ft,, ft,, ft4, * ] = [2, 4, 8, 24]. 
(15) (1, 4, 4, 4, «):[fto, ft,, ft,, *] = [2, 0, 8, 24]. 
(16) (1, 4, 4, 16, «) : [ft,, ft,, ft4, *] = [6,12, 8, 24]. 
(17) (1, 4, 8, 8, a) : [ft,, ft,, ft,, *] = [0, 4, 8, 24]. 
(18) (1, 4,16, 16, a) : [ft,, ft,, ft,, ft4, *] = [0, 4, 4, 8, 24]. 
(19) (1, 16, 16, 16, a) : [ft,, ft,, ft4, *] = [2, 0, 8, 24]. 

When combined with the theorems on the number of 
representations of an integer as a sum of two and of three 
squares, all of these give interesting binary quadratic class 
number relations of a new kind, examples of which are 
presented in another paper (not yet published). To save 
space we shall omit the numbers of proper representations, 
which can be written down from the above by Theorem II ; 
e. g., for the form (1) we get 

(fti, /<, K, K, fcl, *) = (6,12, 2, 12, 16, 0). 
T H E U N I V E B S I T Y OF W A S H I N G T O N 


