NOTE ON THE CONVERGENCE OF WEIGHTED TRIGONOMETRIC SERIES*

BY DUNHAM JACKSON

1. Introduction. Let f(x) be a function continuous for all values of x, and of period 2π . Let $T_n(x)$ be a trigonometric sum of the nth order.† If $T_n(x)$ is determined, among all such sums, by the condition that the value of the integral

$$\int_0^{2\pi} [f(x) - T_n(x)]^2 dx$$

shall be a minimum, it becomes the partial sum of the Fourier series for f(x). The problem can be generalized by taking, as the quantity to be reduced to a minimum, the integral

(1)
$$\int_0^{2\pi} \rho(x) [f(x) - T_n(x)]^2 dx,$$

where $\rho(x)$, indicating the weight to be attached to different values of the argument, is a function of x, likewise of period 2π , and positive for all values of x. There is a considerable body of literature bearing more or less directly on the generalized problem. This literature owes its inspiration largely to the researches of Tchebychef;‡ particular mention should also be made of a classical memoir by Gram.§

The purpose of the following paragraphs is to discuss the convergence of $T_n(x)$ toward the value f(x), as n becomes infinite. The method is one which I have used recently in connection with the corresponding problem in which the weight is constantly equal to unity, and the square of the error is replaced by a power with a different exponent. The

^{*} Presented to the Society, December 30, 1920.

[†] The words "of the nth order" will be understood throughout to mean "of the nth order at most."

[‡] Cf., e.g., H. Burkhardt, Entwicklungen nach oscillirenden Functionen und Integration der Differentialgleichungen der mathematischen Physik, Jahresbericht der Vereinigung, vol. 10, Heft 2 (1908), pp. 823 ff.

[§] J. P. Gram, Ueber die Entwickelung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate, Journal für Mathematik, vol. 94 (1883), pp. 41-73.

question of convergence is treated by Gram, in the paper cited, but scarcely in a manner to meet the requirements of modern analysis.* More recently it has come within the range of a number of investigations, including a series of papers by Stekloff, in the Bulletin de l'Académie des Sciences, Petrograd, and elsewhere, with which I am only very imperfectly acquainted; a paper by J. Chokhate,† which I have seen in manuscript; and a series of papers by Szegö.‡ Up to the present time, I have not seen any treatment covering precisely the results that are presented below. If it should appear nevertheless that such a treatment exists, the novelty of this paper would consist in the method employed, and in the applicability of the method to the case in which the exponent 2 in (1) is replaced by an arbitrary m, as suggested in the concluding paragraph.

2. The Convergence Theorem. The conclusion to be established is as follows: §

Let $\omega(\delta)$ be the maximum of |f(x') - f(x'')| for $|x' - x''| \leq \delta$. Let $\rho(x)$ be continuous and positive for all values of x; or, if not continuous, let it be measurable, and always included between two fixed positive bounds. || Then we may state the theorem:

^{*} Cf. Burkhardt, loc. cit., pp. 848-854.

[†] See also J. Chokhate, Sur quelques propriétés des polynomes de Tchébicheff, Comptes Rendus, vol. 166 (1918), pp. 28-31.

[‡] G. Szegö, Über die Entwickelung einer analytischen Funktion nach den Polynomen eines Orthogonalsystems, Mathematische Annalen, vol. 82 (1921), pp. 188–212; Über die Entwicklung einer willkürlichen Funktion nach den Polynomen eines Orthogonalsystems, Mathematische Zeitschrift, vol. 12 (1922), pp. 61–94; Über den asymptotischen Ausdruck von Polynomen, die durch eine Orthogonalitätseigenschaft definiert sind, Mathematische Annalen, vol. 86 (1922), pp. 114–139; and other papers referred to in footnotes attached to the above.

[§] The proof of the existence of a unique solution for the minimum problem is based so directly on similar proofs already given that it will not be taken up in detail here; cf. D. Jackson, On functions of closest approximation, Transactions of this Society, vol. 22 (1921), pp. 117-128.

 $[\]parallel$ It would of course make no difference if this condition were violated at points of a set of measure zero, since the value of the integral (1), and consequently the determination of $T_n(x)$, would not be affected.

The sum $T_n(x)$ will converge uniformly to the value f(x) for $n \to \infty$ provided that*

$$\lim_{\delta \to 0} \omega(\delta)/\sqrt{\delta} = 0.$$

As already stated, the proof is similar to one given recently in another connection.† In the first place, if f(x) and $\varphi(x)$ are two functions whose difference is a trigonometric sum $t_n(x)$ of order n:

$$f(x) = \varphi(x) + t_n(x),$$

and if $T_n(x)$ and $\tau_n(x)$ are two sums, likewise of order n, such that

$$T_n(x) = \tau_n(x) + t_n(x),$$

the value of the integral (1) formed with f(x) and $T_n(x)$ is the same as the value of the corresponding integral formed with $\varphi(x)$ and $\tau_n(x)$, and both integrals will reach their minimum values simultaneously. That is, if $T_n(x)$ and $\tau_n(x)$ represent the best approximating functions for f(x) and $\varphi(x)$, respectively, as judged by the value of the integral (1), the errors $f(x) - T_n(x)$ and $\varphi(x) - \tau_n(x)$ will be identical.

By a general theorem on the approximate representation of continuous functions,‡ there will exist sums $t_n(x)$, of all orders n > 0, such that the difference between f(x) and $t_n(x)$ never exceeds a constant multiple of $\omega(2\pi/n)$. In formulas, let

$$\varphi_n(x) = f(x) - t_n(x),$$

and let ϵ_n be the maximum of $|\varphi_n(x)|$; then

$$\epsilon_n \leq c\omega(2\pi/n),$$

where c is independent of n. In particular, if $\omega(\delta)$ satisfies

^{*} There is no reason to suppose that the particular infinitesimal $\sqrt{\delta}$ has any essential significance for the problem; its occurrence is in all probability due merely to the limitations of the method.

[†] D. Jackson, On the convergence of certain trigonometric and polynomial approximations, Transactions of this Society, vol. 22 (1921), pp. 158–166.

[‡] Cf., e.g., D. Jackson, On the approximate representation of an indefinite integral and the degree of convergence of related Fourier's series, Transactions of this Society, vol. 14 (1913), pp. 343-364; p. 350.

the hypothesis of the theorem,

(2)
$$\lim_{n \to \infty} \epsilon \sqrt{n} = 0.$$

Let $\tau_n(x)$ be the trigonometric sum of order n which gives the best approximation to $\varphi_n(x)$, as determined by the integral corresponding to (1); let

$$\gamma_n = \int_0^{2\pi} \rho(x) [\varphi_n(x) - \tau_n(x)]^2 dx;$$

and let $\mu_n = |\tau_n(x_0)|$ be the maximum of $|\tau_n(x)|$. Let it be assumed that

$$0 < v \le \rho(x) \le V$$
.

the numbers v and V being constants; and let it be assumed temporarily that $\mu_n \ge 4\epsilon_n$.

By Bernstein's theorem,* since

$$|\tau_n(x)| \leq \mu_n$$

it follows that

$$|\tau_n'(x)| \le n\mu_n$$

for all values of x. In particular, for values of x in the interval

$$|x-x_0| \leq \frac{1}{2n},$$

it can be inferred that

$$|\tau_n(x) - \tau_n(x_0)| \leq \frac{\mu_n}{2}$$

and

$$|\tau_n(x)| \geq \frac{\mu_n}{2}$$
.

Since

$$|\varphi_n(x)| \leq \epsilon_n \leq \mu_n/4,$$

it follows further that

$$|\varphi_n(x) - \tau_n(x)| \ge \frac{\mu_n}{4}$$

throughout the interval specified, and, as the length of the interval is 1/n, and $\rho(x) \ge v$,

$$\gamma_n \geqq \frac{v}{n} \left(\frac{\mu_n}{4}\right)^2$$
.

^{*} See, e.g., de la Vallée Poussin, Leçons sur l'Approximation des Fonctions d'une Variable Réelle, Paris, 1919, pp. 39-42.

On the other hand, by the minimum property of $\tau_n(x)$, the value of γ_n is less than that which would be obtained if $\tau_n(x)$ were replaced by any other trigonometric sum of order n; in particular, by comparison with the integral which is obtained if 0 is substituted for $\tau_n(x)$,

$$\gamma_n \leq 2\pi V \epsilon_n^2$$
.

Hence

$$\frac{v}{n} \left(\frac{\mu_n}{4}\right)^2 \leq 2\pi V \epsilon_n^2,$$

$$\mu_n \leq 4 \sqrt{\frac{2\pi V}{n}} \epsilon_n \sqrt{n}.$$

This relation, derived on the hypothesis that $\mu_n \ge 4\epsilon_n$, clearly holds in the contrary case also, since $V \ge v$ and $n \ge 1$.

In any case, then, since $|\varphi_n| \leq \epsilon_n$ and $|\tau_n| \leq \mu_n$,

$$|\varphi_n(x) - \tau_n(x)| \le \epsilon_n + 4\sqrt{\frac{2\pi V}{n}} \epsilon_n \sqrt{n} \le k\epsilon_n \sqrt{n},$$

where k is independent of n. But it has been pointed out already that $\varphi_n(x) - \tau_n(x)$ is the same as $f(x) - T_n(x)$, where $T_n(x)$ is the sum giving the best approximation to f(x), as determined by the integral (1); hence

$$|f(x) - T_n(x)| \le k\epsilon_n \sqrt{n}$$
.

This relation, combined with (2), establishes the truth of the theorem.

With the same method of treatment, the problem can be varied by using a general power of the absolute value of the error, instead of the square, together with a weight-function $\rho(x)$; and the method is applicable also to problems of polynomial approximation. For treatment in detail, however, the case discussed above may be regarded as sufficiently illustrative.

THE UNIVERSITY OF MINNESOTA