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CONDITION THAT A TENSOR BE THE
CURL OF A VECTOR *

BY L. P. EISENHART

It is the purpose of this note to establish the following
theorem.

THEOREM. A mnecessary and sufficient condition that a co-
variant skew-symmetric tensor A;; in a space of any order n be
expressible in terms of n functions ¢; in the form
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Consider first the case of 3-space. If ¢, and ¢3 are any
two functions such that
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are satisfied in consequence of (2), and the theorem is estab-
lished for 3-space.

Now we show that, if the theorem is true for n-space, it is
true for (n + 1)-space. On this assumption equations (1) hold
fore,7=1,---,n. Fora particularzandjand fork = n 4 1,
equation (2) may be written in the form
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Hence a function ¢,1 is defined by the equations
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* Presented to the Society, September 7, 1922.
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Replacing jin (2) byl (=1, ---, n; = j), we have, by (3),
041 _ i( o1 a€0n+1> .
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Consequently (1) holds for 2, j=1, ---, n+ 1, and the
theorem is established. It should be remarked that one of
the functions ¢; may be chosen arbitrarily, or what is equiva-
lent, that the functions ¢; are determined to within additive
functions 9y/dz*, where ¥ is an arbitrary function of the 2’s.
Thus far we have made no use of the fact that A,; are the
components of a covariant tensor. If 4., denote the com-
ponents of the tensor in terms of coordinates a’, then
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If T% and 1‘;{’; denote the Christoffel symbols of the second

kind for the respective systems of coordinates 2 and 2’ of a
Riemannian geometry, then™
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The same equations obtain in the more general case of a
geometry of paths, where the functions I'is and Ty} are the
coefficients of the equations of the paths in the two systems of
coordinates.t By means of these equations we show that, if
the functions 4;; satisfy (2), so also do Ajp, defined by (4).
In consequence of the above theorem equation (4) may be
replaced by the equation
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Hence
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* Bianchi, Lezionz, vol. 1, p. 64.
+ See PROCEEDINGS OF THE NATIONAL ACADEMY, vol. 8 (1922), p. 21.
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where ¢ is an arbitrary function.

From (5) it is evident that if 4;; are defined as the com-
ponents of the curl of covariant vector, then (2) are necessarily
satisfied; but (2) is not a sufficient condition. That this
condition is not sufficient was overlooked by me in a recent
paper,* and my conclusions in § 5 are not correct. In fact,
the skew-symmetric tensor there defined by S;; is given by

_ or% _ dT%,
oz’ 9’

S

and the functions T'% and T, in two sets of coordinates are
in the relation
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where A is the Jacobian of the transformation.
PRINCETON UNIVERSITY

A NEW GENERALIZATION OF TCHEBYCHEFEF’S
STATISTICAL INEQUALITY

BY B. H. CAMP

1. Introduction. If f(z) is any frequency distribution, and
¢ its standard deviation, the symbol P(As) may be used to
represent the probability that a datum drawn from this distri-
bution will differ from the mean value by as much as s,
numerically. For the solution of various statistical problems
it is desirable to have a formula which will measure P(\s)
when f(x) is only partially known. A case of practical im-
portance occurs when f(x) represents the distribution of values
of a statistical constant determined by sampling from a known
distribution, such a constant as, for example, a mean value,
or a coefficient of correlation. In such cases it is usually
difficult or impossible to find the complete distribution f(x);
but quite feasible to find its lower moments. Tchebycheft’s
well known inequality is: P(As) = 1/A%. It has been general-

* PROCEEDINGS OF THE NATIONAL AcApEMY, vol. 8 (1922), p. 236.



