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SUMMABLE INFINITE DETERMINANTS*

BY WILLIAM L. HART

1. Introduction. It has been customary to define the value
of the infinite determinant

1) D = |aijlij=1,2 -
by the equation
(2) D = lim Dn (Dn = IaijJ 19 J=1y 2y eeey n);

n—0

in case the limit exists. Supposing that the a;; are any
complex quantities, we may state

DerviniTioN. The determinant (1) s summable to the value
D in case the sequence (D) is summable to D.

In this definition the term summable may be understood
in any one of the various senses which have been givent to
that term. It is easily seen that if D is summable, its value
remains unchanged if we interchange its rows and columns.
The sign of D is changed if two contiguous rows or columns are
interchanged. If all the elements of a row, or column, are
multiplied by a constant K, the new determinant obtained
has the value KD.

It is the purpose of this note to present certain types of
infinite determinants which are summable in the sense of the
Cesdro first mean and, in the future, the unqualified word
summable will be applied to determinants of this variety. In
§ 2, there will be given a proof of the summability and a dis-
cussion of certain properties of a class of determinants anal-
ogous to the Von Koch normal} infinite determinants. In
§ 3 the summability of a somewhat different type of deter-
minants will be established.

2. A Certain Class of Determinants. A simple example of
an infinite determinant which is summable to the value 1/2 is

* Presented to the Society at Chicago, March 26, 1921.

1 E. Borel, Les Séries divergents, p. 87; Hurwitz, Report on divergent

series, this BuLLETIN, Vol. 28, 1922, pp. 17-36.
1 Cf. Kowalewski, Determinantentheorie, p. 372.
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where all elements are zero except for those in the main
diagonal minors of order 2, which are displayed, and where the
= signs in the main diagonal may be selected at will.

For (3), we find that Dy, = 1 and Doy =0 for k = 1, 2,

The determinant (3) would remain summable to the
value 1/2 if arbitrary elements b;; were substituted for the
zero elements situated above the elements + 1, in the columns
of even index, and to the left of the elements — 1, in the rows
of even index.

Let the arbitrary quantities b;; of the preceding paragraph
be chosen as either + 1, — 1, or 0, and, after this selection,
let the element of (3) in row ¢ and column j be denoted by e;;.

TreoreM 1. In (1) suppose that a;; = e -+ ci, where
Zg=1]ci;| converges. Then the determinant D of (1) is sum-
mable and
4) 2D =Dy+ (Dy— Dy) + +++ + (Don — Dapsg) + ---.

First let us consider certain properties of the infinite matrix

4= (Cij)ij:l, 2, seee
By a minor of A4 of order p we shall mean a determinant of
order p formed by those elements of a certain set of p rows of
A which are located in a certain set of p columns. Let I
represent the sum of the absolute values of all terms which
enter in the expansions of all minors, of all orders, of the
matrix 4. Then it is well known that I converges.*

In order to establish the theorem, we note that the deter-
minants D, in the present case have the following properties

when expanded in terms of the quantities ¢;;:
(a) For every n, D, is equal to the sum of certain terms from

* Cf. Kowalewski, loe. cit., p. 374.
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I, with positive or negative signs attached, plus 1, if n is
even, and plus zero, if n is an odd integer.

(b) For every value of h > 1, Dy, contains all terms of
D, and, moreover, the new terms occurring in D,; do not
occur in any Doy if k < k.

(¢) For every value of h, Dy,; consists of terms which
are not found, even with a change of sign, in any other deter-
minant Doy (k 5 k).

The property (a) results from the fact that the elements e;;
are &= 1 or 0. One verifies (b) by expanding D,; according to
the elements

) €1, 2h—1, C2, 2h—1> * * *5 Coh—1, 2h—1, C2h, 2h—1 — 1,

in its (2h — 1)-th column. We establish (¢) by expanding
D)1 according to the elements of its last column, which
consists of all the quantities (5) except the last.

To establish the summability of D, we must show the exis-
tence of lim,_.S, where

D «ov 4D,
(6) = 1“"% .
When n = 2k let us write
Sor = R | Tor
T ok T ok
where

Roy = D1+ D3+ -+ + Dyjpr
and

Ter = Dy+ Dy+ -+ + Dyy.

In view of properties (a) and (c) above it follows that
|R:x| = 1. Consequently,

. Rop _

hm ok
It follows from properties (a) and (b) that each bracket in the
series

K=D;+ -+ 4+ (Dep — Dop2) + -+,

when written in terms of the quantities ¢;;, consists of terms
from I with various signs attached. Since no term occurs in
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more than one bracket, it is seen that K converges. Therefore,

lim 2% = K = lim Dy,

k—+o0 k—x

and it follows that lim—..S2;, = K/2. As a consequence of the
simple identity

Rorys | Tor 2k

2k + 1 ok 2k 4+ 1°

it is verified that lim,...S, = K/2, which completes the proof
of the theorem.

It is evident that the algebraic complement* A;; of each
element a;; in the determinant of Theorem I is itself a deter-
minant of the same type. For the complement is obtained
by replacing a;; by + 1, or — 1, as the case may be, and by
substituting zero for all other elements in the ith row or in the
jth column.

If we consider the determinant D’ resulting from (3) by
the addition of ¢;; to the element in the 7th row and jth column,
for every ¢ and j, it follows from Theorem I that D’ is sum-
mable. Let E represent a determinant obtained from D’ by
replacing a finite number of its rows (or of its columns) by a
bounded set of numbers. Then we could prove that E is
summable by the method used in establishing Theorem I.

Let us consider the sequence (t,; n = 1, 2, ---) defined by

S2k+1=

(7) tgk__l = 2]0, tz]c = 2]0 -1 (]C = 1, 2, . '),
as the normal order for the arrangement of the positive in-
tegers. Then a sequence p = (jz; h =1, 2, ---), containing

all the positive integers, will be called an alteration of the order
(7) if, for all values of % sufficiently large, j, = t;. Thus, for
every alteration p, there exists a smallest even index h = 2m
such that j, = ¢, if £ = 2m — 1. Consider the first (2m — 2)
terms o’ p,

(8) jl; ety .7.2m—-27

which give a permutation of the numbers (1, 2, - -, 2m — 2).
Let us call p an even or odd alteration according as (8) is
obtainable from the order (1, ---, 2m — 2) by an even or by

* Cf. Kowalewski, loc. cit., pp. 378, 382.
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an odd number of successive interchanges of neighboring num-
bers. It is well known™ that the evenness or oddness of p is
independent of the way in which these interchanges were made.

To each alteration p let us make correspond the term
2m—2

P,=+ 1/:11 ar, 5, [J1(— aer—12n aon, 21-1) 1,

h=m
where the + sign is selected if p is even and the minus if p
is odd. Suppose that (1) is a determinant of the type E
mentioned above. Then it can be proved that
) 2E = Z P,

(allp)

where the summation is extended over all alterations p of the
system of positive integers. On the basis of this result, it can
then be shown that, for every j and for every £,
(10) E = ; a{inj = ]Z—l aijkj,
where A;; is the algebraic complement of the element a;; in (1).
The proofs of (9) and (10) will not be given since the reasoning
would be practically identical with that used in the derivation
of similar results in the theory of normal infinite determinants.{
By use of (9) and (10), it would be possible to develop a theory
for the solution of the infinite system of equations

(1 1) Zw @ik = bi) (?’ = 17 2) ° ');
j=1

provided that the determinant (1) formed by the coefficients
a;; is of the type D’ defined above. A very casual inspection,
however, shows that system (11) could easily be transformed
into a system of a well known type whose solution could be
obtained in terms of normal infinite determinants.

The determinants we have considered were obtained from
(3) by simple transformations. If we should take more com-
plicated determinants than (3) as our points of departure we
could obtain results similar to those derived above. For
example, consider the determinant of order ¢ given by

* Cf. Kowalewski, loc. cit., p. 9.
1 Cf. Kowalewski, loc. cit., §§ 154, 155.
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(12) 10 -«-=%1| (pth row),
10

10 (gth row)
where all elements not explicitly indicated are zero and where
the ambiguous sign in the last column is selected in such a
way that the determinant has the value + 1. In the infinite
determinant D of (1) let the elements a;; in the rows of index
mqg+ 1, mqg+ 2, ---, mqg+ ¢ for all values m=1, 2, ---,
be selected as zero, except for those in the columns mg + 1,
mq+ 2, ---, mg+ q. Choose these ¢* elements as those of
the determinant (12). It is easily verified that D is summable
to the value p/q. With this determinant D as a starting point
instead of the determinant (3), the same methods that were used
above suffice to establish a theorem analogous to Theorem I.
The results stated after Theorem I would also have their
analogies in the present case. Once more it should be noted
that the determinants considered in this paragraph would not
enable one to solve any problem in connection with infinite
systems of linear equations which could not equally well be
solved by the known theory of normal infinite determinants.

3. Another Type. An example of the type* of determinants
to be considered in the present section is given by (1) in case

(13) a;; = O’ (7‘ :*'_’ .7): A3z = (—— 1)1; (7' = 1) 2: . ')'
Then D is summable to the value zero and satisfies the equation

(14) - % (lim Danys + lim  Dyy).
Another example of this type is given by (1) if
a; = 0, (71 * .7))
15 g .
(15 A2i-1, 2i-1 = @, (ag5,20=B,2=1,2, -++; af = 1).

In this case D satisfies (14), where the first limit is « and the
second is 1, so that D = (a + 1)/2. It is obvious that (15)
may be generalized to the case where the main diagonal

* The author acknowledges his indebtedness to Professor L. L. Silverman
for suggesting the consideration of the determinants treated in this section.
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elements are oy, o, -+-, oy, @1, -+, &y, -+ and where all
other elements are zero, under the supposition that
(16) oarop s ap = 1.

If, under conditions (13), we should add ¢;; to the element
ai;; of D, for all (i, j), the resulting determinant would be
summable and its value would be given by (14) in case the
(ci;) satisfied the condition of Theorem I. The proof of this
statement would be almost a repetition of that of Theorem I.

Let D’ represent the determinant resulting from (1), under
conditions (15), by the addition of ¢;; to as;.

TuroreM II.  In the sum I of Theorem I let py represent the
sum of all terms containing exactly k factors c;;.  In (15) suppose
that |a| > 1 and that

17 k; prlal®
converges. Then, D' is summable and satisfies the relation
(18) D’ = (lm Doyt + lim Dan).

The properties of summable sequences make it clear that
the theorem will be completely established if we can show that
the two limits in (18) exist. Let us consider the convergence
of the sequence (Dant1’). The last two rows of Dy,p1 are:

Can, 15 Com,2 5 ** %5 Con,on T By Con, 2041
(19)

Cont1, 1y Cont1, 2, ** ), Contl, 2ny  Contl, 2n41 + a.
In expanding Ds..i’ by Laplace’s Rule,* according to the
minors of the last two rows, it is verified that we obtain
(20) Dynyi' = Dona’ + Pony,
where Py,y1 consists of terms containing «, 8 and factors c;j.
Let the expression frame of a term of P,y refer to the absolute
value of the product of those factors ¢;; entering in the term.
The expression Py,y1 has the following properties:

(a) All terms contain at least one ¢;; from those in (19) and
hence the frames of terms of Ps,+1 are distinct from those of
P 2h+1 for h <n.

() There are no repetitions among the frames of the terms
Of P ont1.

* Cf. Bbcher, Introduction to Higher Algebra, p. 24.
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(c) After the relation a8 =1 has been used, the power of
« entering in a term of P,,y; is at most one unit greater
than the number of factors ¢;; in that term. If a power of
B remains after use of a8 = 1, the absolute value of the term
is increased by neglecting the power of B because [B| <1,

It is seen that the convergence of the sequence (Dsyy1’) is
equivalent to that of the series

(21) DY+ Ps+ P+ oo+ Poppr+ -

Let Pa,y1 represent Pa,.; with all of its terms replaced by their
absolute values. As a consequence of the properties (a),
() and (c) it follows that the convergence of (17) implies
that of (21) because Ps+ Ps+ - -+ = |a| Xiz1|a|*pr. Hence
the sequence (Da,y1) converges. A proof of the same nature
as that just given would establish the convergence of the
sequence (Dy,"). Therefore, Theorem II may be considered
completely proved. If we had supposed |B| > 1, an anal-
ogous proof would have shown D’ to be summable under the
same assumption as was made in Theorem II.

Let E represent the determinant associated with (16) after
¢;; has been added to the element in row ¢, column j, for all
(7, 7). The determinant K is summable if condition (17) is
satisfied, where we understand |a| to represent the absolute
value of the product of all factors a;, from (16) which satisfy
las| > 1. The proof of this statement would be similar to
that given for Theorem II. E would satisfy the equation

22 E= %c (lim Epn 4+ lim Epppa 4+ -+ + lim Egpy ).

n—x n—+w0 n—>wn

Certain interesting questions regarding summable deter-
minants remain unanswered in this note. It may be that
Theorem II and its generalization, in connection with deter-
minant E, are true under hypotheses less restrictive than those
of this paper. More generally, it would be of interest to
know whether a determinant (1), which is summable, remains
so if quantities (c;;) are added to its elements, where the c;;
satisfy the condition of Theorem I.
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