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A TWO-WAY INFINITE SERIES FOR LEBESGUE 
INTEGRALS* 

BY M. B. PORTER 

1. The Defining Series. Let F(x) denote any positive meas­
urable function of n variables defined over a measurable 
point set 5. We shall use the sign ô to denote either a point 
set or its measure, and the signf S* to denote ô diminished by 
a nul-set or to indicate that a property holds almost everywhere 
(presque partout) over ô. 

Now write 

(1) *(«) = £ 2 ^ ( 8 ) = Lim £ 2^(8) , 
i—»•— 00 m-*-oo i——aQ 

where <f>i($) is the measure of all those points Ei of ô for 
which F(x) 9 expressed in the binary scale, has unity in the 
ith place, it being understood that F(x) shall be always 
expressed in closed form when possible (or else never so 
expressed), in order that the representation shall be unique. 
If F(x) is limited, it is evident that (1) will converge uniformly 
over ô. If F(x) is not limited, (1) may still converge; if it 
does, the convergence is necessarily uniform. In that case 
F(x) is summable over ô, and we shall indicate the sum of the 
series by J*F(x), the Lebesgue integral of F over S. The 
integral is definite or indefinite according as we regard ô as 
fixed or as variable. 

In case F(x) is not always positive, set, as usual, 
<j>(x) = F{x) when Fix) ^ 0, \frix) = Fix) when Fix) < 0, 
4>ix) = 0 when Fix) < 0, xf/ix) = 0 when Fix) ^ 0; 
then 

(2) *(8) - £ 2 ^ ( 0 ) - ±2'US)> 
—00 —00 

and this difference may converge even when the separate series 
diverge, if i and j become simultaneously infinite in a suitable 
manner. 

* Presented to the Society, September 9, 1921. 
t Cf. Pierpont's useful notation, Functions of a Real Variable, vol. 1, 

p. 119. 

file:///frix


106 M, B, PORTER [March, 

Thus, if 

F{x) = -=- I x sin - ) y x 4= 0, 
ax \ x) 

Fix) is not summable at x = 0; but if from the interval 
(a, x), a < 0, x > 0, we remove the interval 2e symmetric 
about the origin, the integral (2) will exist over the remaining 
domain and will be equal to x sin (I/o:) — a sin (1/a). A 
similar procedure can be applied where Fix) has a countable 
set of non-summable points, and is the derivative of a con­
tinuous function. 

Let 7] denote a set of infinitesimal hyperspheres about x, 
a point of 5, as center. We shall show that 

(3) L i m * ^ 
T,-*O rj 

exists over 5*. Since this is a point-function we shall use the 
argument x in the limit. 

Lebesgue has shown in his metric-density theorem that for 
the measure functions 4>% the limit (3) exists almost everywhere, 
and thatf 
/4x <t>iix) = 1 over E?, 
{ } 4>i'ix) = 0 over C*Eif 

which in one dimension implies the existence of the derivative 
in the ordinary sense of the word over Ej* and d*Ei with 
the values given in (4). 

2. Special Theorems. From (4) we have the following 
theorems. 

THEOREM A. For any measurable f unction Fix), 

*"(*) = £2V(*)-Ë2W(aO, 
— O O — C O 

both series converging over that part of S* where Fix) is finite. 
THEOREM B. In case Fix) is limited, J] Fix) exists and 

its derivative is 
m m 

A'm = E 2V(s) - Z n'ix) = F(x) 
— QO — 0 0 

over 6*, the series converging uniformly over 8. 
t Various proofs of this theorem have been given, e.g. a simple proof 

based on Vitali;s covering theorem by de la Vallée Poussin, Cours d'Analyse, 
vol. 2, p. 110 et seq. See also Hobson, Real Variables, vol. 2, p. 178 et seq. 
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If ^(ô) denote a function with a bounded upper symmetrical 
derived number D+\[/(x), then 

ƒ(«) = S*D**(x) 

exists; and, since f'(x) = D+\f/(x) over ô*,/(S) and ^(5) differ* 
by a constant. In one dimension, this is Lebesgue's theorem 
that a monotone increasing function with bounded derived num­
bers has a derivative almost everywhere. 

Theorem B can be extended by means of Vitali's covering 
theorem to any summable function, but we shall not stop to 
give here the details of the proof. The convergence of the 
series will be uniform over a set 5i differing from ô by as little 
as we please. 

3. Fundamental Theorems. I t will be readily seen that the 
following fundamental theorems follow at once from (1). 

(1) The mean value theorem for integrals. 
(2) The theorem that f J + fj= fh+J, 

where Si and ô2 have only a nul-set in common. 
(3) The theorem that f8 [h + f2] = fji + f8 /2 , 

proved by truncating / i and /2 , deriving, and then using 
Scheeffer's theorem. 

(4) The theorem that Lim Jlfn(%) = Jl Limfn(x). 
n—*.co n->oo 

In conclusion we shall make some applications of Theorem A 
which will show its use in dealing with measurable functions. 

4. Application to Almost Everywhere Finite Measurable 
Functions. If, in Theorem A, we cover each Ei set by a finite 
set of non-overlapping cells Ci such that 

\metis Ei— Hd\ < €-.> 

and if we define a function equal to one over the 0 / s and to 
zero over the complementary cells, we shall have a discontinu­
ous function which can be made continuous by trimming the 
Ci cells or their complements and using suitable connective 
tissue. Thus we have the following theorem. 

* In one dimension, this follows from Lebesgue's extension of Scheeffer's 
theorem, Lebesgue, Leçons sur VIntégration, p. 79. 
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THEOREM C. Any almost everywhere finite measurable f unc­
tion is equal to a continuous function save over a set of points of 
arbitrarily small measure e.* 

If we denote this continuous function by C(x), we have 
J\F(x) = RJjC(x) + ë when ô and S differ by as little as 
we please, where RJl denotes the Riemann integral. 

5. Egoroff's Theorem. From § 4, we can deduce EgorofFs 
theorem :f If a sequence of measurable functions Fi(x) con­
verges to a limit F{x) over 5 it will converge uniformly save 
over a subset of arbitrarily small measure. 

6. Lusiris Extension of Weierstrass' Theorem. In § 4, by 
using a set of e's converging to zero, we have the theorem: 
Any in general finite measurable function is the limit almost 
everywhere of a sequence of continuous functions. Hence we 
have also Lusin'sJ extension of Weierstrass' theorem, viz.: 
Any measurable function is almost everytvhere the limit of a 
sequence of polynomials. 

7. Approximately Continuous Functions. Making use of 
Den joy's definition of approximately continuous f unctions,§ 
we have the theorem : A measurable almost everywhere finite 
function is approximately continuous save for a nul-set. 

By means of Vitali's covering theorem it is easy to show that 
any almost everywhere approximately continuous function is 
measurable. Hence we can say that the jR-integrable functions 
are almost everywhere continuous and the i-integrable func­
tions are almost everywhere approximately continuous, when 
it is understood, of course, that the functions are limited. 

T H E UNIVERSITY OF T E X A S . 

* Cf. Lusin, COMPTES RENDUS, June 17, 1912. 

t COMPTES RENDUS, Jan. 30, 1911. 

t Lusin, COMPTES RENDUS, loc. cit. 

§ A function F(x) is approximately continuous at x when it is continuous 
over a point set of metric density one at x. BULLETIN DE LA SOCIÉTÉ 
DE FRANCE, vol. 43, p . 165; or Hobson, vol. 1, p . 295. 


