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I trust that I have now made clear my own feelings regarding 
the three questions raised at the outset; first, as to why diver­
gent series have come into such prominence since the appear­
ance of the early volumes of the encyclopedia, second, what 
has been done that really constitutes a vital advance and third, 
as to whether such series are at last upon a truly scientific 
basis. My only fear is that in attempting to couch the whole 
in very simple form I may have gone too far in this direction 
and thus violated a principle which, I believe it is said, the 
poet Browning always carefully observed; namely, of never 
using so simple a style that the intelligence of one's readers or 
hearers may be offended. But this is a rather treacherous 
principle, as most people discover in attempting to read 
Browning, so I may perhaps be pardoned if I have seemed to 
depart too far from it. 
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T H E purpose of this note is to prove the differentiability of 
the solutions of a system of differential equations with respect 
to the constants of integration by a method which seems more 
natural and simpler than those which have hitherto been pub­
lished. Incidentally a restatement of the so-called " imbedding 
theorem" for differential equations is given, a theorem which is 
frequently applied in the calculus of variations, and which 
has been useful, and could be made still more so, in many other 
connections. I t is analogous to the fundamental theorem for 
implicit functions in its statement that a solution of a system 
of differential equations given in advance is always a member 
of a continuous family of such solutions. 

Let C be an arc 

(C) x =K u(r), n ^ T ^ r2, 
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for which the function u is single-valued and has a continuous 
first derivative. The neighborhood Ce of this arc is the totality 
of points (T, x) which satisfy the inequalities 

(C.) n^T^ri, \X-U(T)\ ^e . . 

In the differential equation 

(1) JT = Sir, x) 

the function ƒ is supposed 
(a) to be single-valued and continuous in Ce ;* 
(b) to satisfy the Lipschitz condition 

(2) \f(T,x)-f{T,Xf)\ £K\X-X'\ 

whenever (T, x) and (T, a') are both in Ce; 
(c) to be such that the equation (1) has the arc C as a solution. 

By a solution of equation (1) is always meant an arc of the 
type of C having a continuous derivative and satisfying the 
equation. The theorem to be proved is then the following: 

For every neighborhood Ce of the arc C with the properties just 
described there exists a second neighborhood C8 through every 
point (TO, XO) of which passes one and but one solution of equation 
(1), defined and in Ce on the whole interval n T%. The function 

x = V(T, TO, XO) 

representing these solutions is continuous and has a continuous 
derivative dv/dr in the region R of points (T, TO, X0) satisfying the 
conditions 

(R) Ti = T = r2, (TO, XO) interior to Cfi. 

If ƒ(T, X) has continuous partial derivatives of the n-th order in 
Ce, then v and dv/dr also have continuous partial derivatives up to 
and including those of order n when (T, TO, XO) lies in the region R. 

The existence and continuity of the function v(r, T0, XQ) have 
been established in various ways. For the sake of complete­
ness a proof will be given here which is based upon the method 
of approximation of Picard, and which makes use of the se­
quence of functions {vm} defined by the following equations: 

* If only the continuity of ƒ with respect to r is presupposed, then with 
the help of (6) it is provable that ƒ is continuous in r and x together. The 
proof for boundary points of C€ is less direct than for interior points. 
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n{r, TO, Xo) = x0+ U(T) — U(TQ), 

«I(T, T0, XO) = #O + I ƒ 0 , «0)dr, 
(3) 

flm+lO, To, flJo) = #0 + I / ( T , ^m)^T. 

To justify the use of these formulas it must first be shown 
that every function vm defines points (T, vm) in the region Ce 

where the continuity properties of ƒ are presupposed, provided 
that the region R in which the values (T, T0, XO) range is suffi­
ciently restricted. For this purpose select S so small that in 
R the relation 

(4) | flo — u | = | Xo — U{TO) I < ce"""A = p 

holds, where X is the length of the interval TIT2 and p merely a 
notation for the constant te~Kk. Since on the arc C 

U(T) = U(TO) + I / ( T , u)dr 

it follows from (3), (4), and (2) that 

| vx — 'u | = \xo — M(T0) + I [ƒ0, 0O) — ƒ 0 , w)]dr 

< p { 1 + iiifpl}, 
and hence by a simple induction that for every value of r on 
the interval TIT2 

K | T — To | . . Km I T — To I I I ^ i 1 . * l T - TO I , , 
i 0 m - ^ l < p | l + j-j !-'•• + ml J 

^ peKk = e. 

Hence every function vm determines an arc in Ce and can be 
used in the last of formulas (3) to define Vm+i. 

Furthermore the sequence {vm{r, TO, XO)\ of functions con­
tinuous in the region R converges uniformly, and its limit 
function v(r, T0, X0) is therefore continuous. For from (3) 
and (2) 
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K - tfi | = I [f{r, Vi) - / ( T , v0)]dr 

< 2 e " \ r - T 0 \ 

1! 

since v0 and Vi both define curves in Ce and hence differ by at 
most 2e. An induction as before now gives 

showing that the series 

(5) Vi + (>2 - Al) + * • • + («w+l — Vm) + 

converges uniformly. 
From the last of the equations (3) it follows as usual that 

the limit function v(r, T0, x0) satisfies the equation 

V(T, TO, XO) = x0 + I ƒ [r, V(T, T0, x0)]dT 

and hence also the differential equation (1). If there were a 
second solution w(t) of equation (1) through the point (TO, X0) 
it would satisfy an equation similar to the last one, and con­
sequently also the inequality 

w < I f 1 1 < 2 e - * | T ~ T o 1 

1! 

since 2e is greater than | w — v | on the interval T1T2. But 
successive application of this relation gives 

\w — v\ < 2e 
ml ' 

which can be true only if v and w are identical, since the second 
member has the limit zero as m increases. 

The proofs of the preceding paragraphs establish the exis­
tence, continuity, and uniqueness of the function v{r, TO, XO), 
and also of its derivative dv/dr since v satisfies (1). To prove 
that it has the further derivatives described in the theorem, 
suppose first that ƒ(T, X) has continuous first derivatives in Ce. 
Then each of the functions vm has a derivative 

(6) ^ o = 1 + iMT^-i)^x7dT 



1918.] SOLUTIONS OF DIFFERENTIAL EQUATIONS. 19 

and it is proposed to show that the sequence {dvm/dx0} con­
verges uniformly for values (T, TO, #O) in the region R. A well-
known theorem* concerning the differentiation of a series 
term by term, applied to the series (5), then establishes the fact 
that the limit v(r, TO, XQ) of the sequence {vm} has as its deriva­
tive the limit of the sequence {dvm/dxo}. 

Consider the two sums 

(7) B = 1 + Cfjr + ...+ lTfx... ffxdr + • • -, 
I/TO • 'TO • 'TO 

(8) | ^ = 1 + f Am^dr + •••+ f Am.! • • • P A d r m , 

where fx = fx(r, v) represents the first partial derivative of ƒ 
with respect to x, and An = fx(j, vn). The first sum is an infi­
nite series, while the second has a finite number of terms found 
by successive application of formula (6). A simple inductive 
proof shows that each term of (8) approaches uniformly the 
corresponding term of (7) as a limit when m increases indefi­
nitely, since the elements of the sequence {vm} approach uni­
formly the limit v. Further each term of both sums has 
absolute value less than the corresponding term of the series 

1 | K\T-TQ\ Kn\T-T0\
n , 

1! n\ ' 
or of the series 

where K is now the maximum of the absolute value of fx in Ce. 
I t follows that an integer n can be taken so large that all the 
terms of the series (7) after the nth have a sum with absolute 
value less than e/3, and also so large that the same is true for 
the expression (8). Since the individual terms of (8) approach 
uniformly those of (7) it is also true that for sufficiently large 
values of m the sums of the first n terms of (8) and (7) differ 
by less than e/3. Hence for such values of m the difference 
between dvm/dxo and the sum of the series (7) is less than e, and 
the derivatives dvm/dxo approach the sum of the series (7) 
uniformly for all values (r, To, XQ) in the region R. The func­
tion v has therefore a derivative dv/dxo given by the series 

* Goursat-Hedrick, A Course in Mathematical Analysis, vol. 1, p. 365. 
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(10) ÖXo J T ° 

+ ffx(T,v) ••• fV,(T,t))dr"H---- , 

which converges uniformly, since its terms are respectively 
less in absolute value than those of (9), and dv/dx0 is therefore 
continuous in the region R. 

Similar reasoning shows the existence and continuity of 
the derivative dv/dro. For from equations (3) 

dvm r dvm^i 
â— == — j(To, XQ) + I Am-i-^— dr 

= — jo — I Am-ifodr — • • • 

An^v-'j AJodr™-1- A m - v \ A0u'(T0)dTm, 
TO * ^ T O *^To * ^ T O 

where ƒ o = / (TO, #O). T h e comparison series analogous to (9) 
is v t imes t h a t series, where v is t he larger of the maxima of 
| / ( T O , %O) I and | W'(TO) | in R, and the value of the derivat ive 
sought is t he cont inuous sum of t h e uniformly convergent 
series 

J - = — f (TO, SO) - I / » ( T , «) / (TO, # O ^ T - . . . 
CTO JTO 

(ID r r 
— I / * ( T , ») • • • I / * ( T , »)/O(T0 , a;o)^Tm - • • •. 

t / T 0 t/TO 

Finally the equation 
dv 

(12) ^ = f(r, v) 

shows t h a t dv/dr is continuous and has continuous first par t ia l 
der ivat ives in the region R, since ƒ and v have this proper ty in 
C€ and R, respectively. This completes the proof of the 
theorem for t he case n = 1. T h e corresponding results for 
an a rb i t r a ry value of n are readily established by induction 
when t he theorem for n = 1 has been proved for a system of 
equa t ions instead of a single one, as will be shown below. I n 
concluding the simpler case it is impor tan t to note the relation 
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(13) Br-^ofiTo'Xo)' 
which follows readily from (11) and (10). 

The proofs of the preceding theorems for a system of dif­
ferential equations are of the same character as those above, 
but the equations used in the proofs will be much more com­
plicated unless notations are used for matrices and multipar­
tite numbers. Peano seems to have been the first to define 
and apply the moduli of multipartite numbers and matrices 
in proving existence theorems for differential equations, the 
case which he considered being that of a linear system.* If x 
denotes the set of numbers (xf, x", • • -, xip)), and ƒ the set 
(f y f"> ' '> fip))> ^ e single equation (1) will represent the 
system 

(14) -â-=fli>(.t,x',--;xM) ( t=l , ...,p). 

By replacing absolute values everywhere by moduli, the 
modulus of x for example being 

(15) mod x = V^2 + ' h x^\ 

and using simple properties of multipartite numbers and 
matrices,! the proofs for the system (14) can be carried through 
quite simply and the notations will be the same, equation for 
equation, as in the paragraphs above. To facilitate the re-
interpretation of the equations the following table of the sym­
bols used is given: 

Positive integers: i, j , m, n, p; 
Scalars: S, e, K, X, ju, v, p, cr, r, e; 
p-partite numbers: a, ƒ, x, y, z, u, v, w, dvjdro, dvm/dTQ; 
p-square matrices: A, B,fx — df/dx, dv/dxo, dvm/dxo. 
In order to carry through the proofs of the existence and 

continuity of the derivatives of the p functions v, some addi­
tional properties of matrices are needed besides those given 
in the papers cited above. The definition of the modulus of a 
matrix given below is equivalent to that of Peano but different 
in form. I t is closely associated with the notion of a limited 

* Mathematische Annalen, vol. 32 (1888), p. 450. 
t See also my paper, "The solutions of differential equations of the 

first order as functions of their initial values," Annals of Mathematics, 2d 
ser., vol. 6 (1905), p. 58. 
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matrix used by Hubert in his theory of quadratic forms in a 
denumerable infinity of variables, and for the special case 
here considered is identical with the modulus as defined by E. 
H. Moore for the purposes of his General Analysis. I t is 
applied here only to square matrices, but would be equally 
effective for those which are of unequal dimensions, and in 
particular for a matrix of one row and p columns it gives pre­
cisely the value (15). The table of properties in the next 
paragraph but one contains besides those of Peano some further 
properties which are useful in the present paper. 

Let A be a ^-square matrix, and let mod A be the maximum 
of the bilinear form Ay • s* on the set of values of y and z which 
satisfy the equations mod y = mod 2 = 1 . This maximum is 
attained since the set over which y and z range is closed, and 
from the elementary theory of maxima and minima the values 
of y and z which determine the maximum satisfy the linear 
equations 
(16) ^ Ay = pz, Iz = ay, 
from which also _ 
(17) AAy — pay, AAz = paz, 

where p, a are scalars and A is the matrix formed from A by 
interchanging rows and columns. From the equations (16) 
one deduces readily 

(18) Ay-z = p, 2z-y = Ay-z= a, 

when mod y = mod z = 1, so that p and a are both equal to 
the value of the modulus of A. Furthermore from the equa-
ions (16) and (18) 

Ay-Ay = AAy-y = p2, 

which suggests that the modulus defined above may be 
identical with that of Peano, the value which he used being 
the square root of the maximum oîAy-Ay on the set of values 
y satisfying mod y = 1. By reasoning quite similar to that 
just used, and with the help of equations (17), this proves 
to be the case. 

The modulus of a matrix has the following properties, which 
are readily provable: 

* The expression y • z is the sum of the products of the elements of y and 2; 
Ay is the m-partite number whose elements are the dot-products of the 
rows of A by y. For the use of the dot in this connection see Gibbs-Wilson, 
Vector Analysis, p. 55. 
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(1) mod A — maximum of Ay-z on the set of values y, z satis­
fying mod y = mod 3 = 1 , 

= maximum of ^Ay • Ay on the set of values y satis­
fying mod y = 1 ; 

(2) every element of A has absolute value ^ mod A ; 
(3) mod A < p2è if each element of A has absolute value less 

than ô; 
(4) mod K A = \K\ mod A ; 

mod Ay ^ mod A mod y; 
mod AB ^ mod J. mod B; 

(5) mod C4 + B) ^ mod ^ + mod B9 

mod (.4 — B) ^ | mod A — mod B | ; 
(6) mod A is a continuous function of the elements of A; 

Jf*T1 I C T 1 I 

^tór ^ I mod Adrl; 
TO I «^TO I 

(8) ( X*j < mod (dA/dr) for every derivative number X of mod ^4. 
In the statement (7) the elements of A are supposed to be inte-
grable functions of r on the interval r0 ^T ^ n , and in (8) 
they are supposed to have unique derivatives at the value of r 
considered. The property (8) is not necessary for the appli­
cations of the matrix theory in the present paper. 

The property (2) holds because, by choosing all elements of 
y and z to be zero except one element equal to + 1 or — 1 in 
each, the value Ay • z may be made equal to the absolute value 
of a selected one of the elements of A. In the expression 
Ay - z with mod y = mod z = 1 there are p2 terms each con­
sisting of an element of A multiplied by two numbers with 
absolute values ^ 1. Hence when each term of A has abso­
lute value less than 8 the maximum of Ay • z surely does not 
exceed p2d. The proof of the first formula (4) is immediate. 
The second part follows since for every y 

^AyAy = \ ^ j f ^ i m o d V = m o d A m o d V* 

To prove the third part of (4), suppose that y, z are sets of 
values having mod y = mod z — 1 and giving ABy-z its maxi­
mum. Then 

mod AB = ABy-z = - p — • — ^By-By ^ mod A mod B. 
yBy • By 

If y and z are similarly the values giving (A-\-B)y*z its maxi­
mum, then 
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mod (A + B) = (A + B)yz 

= Ay-z + By-z ^ mod A + mod J5. 

The second part of (5) follows from the first since 

mod A ^ mod {A — B) + mod B, 

mod B ^ mod (B — A) + mod A 

If A + AJ. is a matrix formed from A by giving its elements 
increments with absolute values less than d, then from the 
second property (5), and (3), 

| mod (A + A A) — mod A\ ^ mod A A < p2ô, 

which proves the statement (6). The property (7) is readily 
proved by applying the first formula (5) to the sum whose 
limit is the definite integral on the left, and then taking the 
limit. Finally the inequality 

1 mod (A + AA) — mod A _ < mod -T— 
- AT 

is deducible with the help of the second property (5), and it 
justifies (8) since every derivative number of mod A is the 
limit of the fraction on the left when AT approaches zero over a 
suitably selected sequence of values. 

In the equation (6) for the system (14) the symbol dvm/dx0 

represents the matrix of derivatives || dv^jdx^ \\ (i, j = 1, 
• • •, p) and the first term on the right is to be interpreted as 
the identity matrix I. A similar agreement holds for the first 
terms of (7), (8), and (10). The symbol ƒ* now represents the 
matrix of derivatives Wdf^/dx(j) \\. Hence in (6) and the 
three last mentioned equations every term is a p-square 
matrix. With the help of the matrix properties (7) and (42) 
above 

Am-1 ' • ' I Am-ndrn 

^ I mod Am-\ • • • I mod Am-^drn < K" 1 T - Tp 1" 

where K is the maximum of mod fx in the region Ce. Hence 
the terms of the series (9) exceed the moduli of the respective 
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terms in (7) and (8). An integer n can now be taken so large 
that the modulus of the sum of the terms of (8) after the nth 
is less than e/3, and so that the same is true for the sum of the 
terms after the nth in the series (7). Since the elements of the 
sequence {vm} converge uniformly to the elements of v, the 
elements of the matrix represented by the first n terms of the 
sum (8) converge to the corresponding elements of the similar 
matrix from the series (7), and by an application of the ma­
trix property (3) it is clear that the modulus of the difference 
of these matrices is less than e/3 when m > n is sufficiently 
large. For such values m therefore 

(£-») modw,-B)<'-
and because of the matrix property (2) each element of dvm/dxo 
converges uniformly, as m increases, to the respective element 
of B. Hence every one of the elements of v has a derivative 
with respect to every element of x0 and the matrix dv/dxo of 
these derivatives is B, Finally the series of moduli of the 
terms of (10) converges uniformly, implying also, on account 
of property (2), the uniform convergence of every series of 
corresponding elements in the matrices which the terms of 
(10) represent, and showing therefore that every element of 
the matrix dv/dxQ is a continuous function. 

The proof of the existence and continuity of the p derivatives 
dv/dro is so similar that it is unnecessary to exhibit it in detail. 

The proofs which have been given above establish the 
properties of the solution V(T, TO, x0) of a system of equations 
for the case n = 1 described in the theorem, and the proof 
can now be given for the general case by an induction. 
Suppose that the existence and continuity of the nth deriva­
tives of v and dv/dr have been proved to be a consequence of 
the assumption that ƒ has continuous nth derivatives, and 
suppose further that the functions ƒ have continuous deriva­
tives in Ce of order n + 1. The system of 2p + 1 equations 

/-m\ dr° a dx0 dw 
(19) ^ = ° ' dr = 0' ^ = / ^ ^ 
in the variables r, TO, x0, w has the solution 

dv 
( r ) ro = const., XQ = const., w = ~r- w0 

OXQ 
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with the initial values TO, X0, WO for r = TO, as one readily sees by 
differentiating equation (12) for the elements of x0 and from 
the fact that dv/dx0 is the identity matrix when r = TO. 
There is a neighborhood I \ in which the second members of 
equations (19) have continuous nth derivatives, provided that 
(T, TO, X0) is in R, since v has this property and ƒ has by hypo­
thesis continuous derivatives of order n + 1. Hence there is 
also a region P for the solution T, analogous to R for C, in 
which the solution V has continuous nth derivatives. This 
shows that all of the elements of the matrix dv/dxo have con­
tinuous nth derivatives since Wo is an arbitrary constant multi­
partite number. The same is true of the elements of the 
multipartite function dv/dr o from equations (13), and for the 
elements of dv/dr from equations (12). Hence all of the 
derivatives of v of order n + 1 exist and are continuous as de­
scribed in the theorem. That dv/dr has the same property 
follows at once from the relations (12). 

In conclusion it may be remarked that the theorems con­
cerning the dependence of the solutions v upon parameters 
involved in the equations (14) require no proofs essentially 
different from those given above. A system of the form 

dx 
Jr = fir, x, a), 

where a is a multipartite set of parameters, may in fact be 
replaced by the system 

dx da 
j T = f(r,x,a), TT=0 

in the variables T, X, a. If the functions ƒ have continuous 
derivatives of order n in T, X, a, then the theorem proved above 
justifies the statement that the derivatives of order n for the 
solutions x = V(T, TO, X, a) and their derivatives vT will also 
exist and be continuous in the region analogous to R for 
these equations. 


