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does not exist, and, therefore, are steps towards the solution of 
the hitherto so-called Steiner problem (a). 

The school-girl problem is merely an example which origi
nated in the development of this paper on combinations, and 
Kirkman justly complained of the almost total eclipse of this 
paper in the wide popular interest aroused by the school-girl 
problem. The eclipse appears to have continued up to the 
present day, since no mention is made of this Kirkman paper 
by Steiner, Reiss, Netto, or by any of the recent writers on 
triad systems. 

VASSAB COLLEGE, 
October, 1917. 

PIERRE LAURENT WANTZEL. 
BY PEOFESSOR FLORIAN CAJORI. 

(Read before the American Mathematical Society September 4, 1917.) 

EVERY one knows that one of the noted proofs of the 
impossibility of an algebraic solution of the general quintic 
equation is due to Wantzel. Nevertheless histories of mathe
matics and biographical dictionaries are silent regarding his 
life. The eleven papers listed in Poggendorff's Handwörter-
buch as due to "Pierre Laurent Wantzell" do not include the 
proof in question, and a query is raised in a footnote regarding 
another "Wantzell"; but nowhere does Poggendorfï refer to a 
"Wantzel." Text-books on algebra and the theory of equa
tions do not give WantzePs full name. The reader is thus 
left without positive information as to the author of "Want
zePs proof." His name suggests German nationality, as does 
the name of "Mannheim," of slide-rule fame. Yet both these 
men were born in Paris and passed their lives at the Polytech
nic School there.* Born in 1814, Wantzel died prematurely 
in 1848. He is the "Pierre Laurent Wantzell" of Poggendorff 
but in his published articles his name is always spelled 

* On the life of Wantzel, see Barré de Saint-Venant in Nouvelles Annales 
de Mathématiques (Terquem et Gerono), vol. 7 (1848), pp. 321-331; A. de 
Lapparent in Ecole polytechnique, Livre du Centenaire, 1794-1894, 
vol. I., Paris, 1895, pp. 133-135, see also pp. 63-65, 190; Gaston Pinet's 
Ecrivains et Penseurs Polytechniciens, 2e éd., Paris, 1902, p. 20; Charles 
Sturm in Comptes rendus hebdomadaires des Séances de VAcadémie des 
Sciences, Paris, vol. 28 (1849), pp. 66, 67. 
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"Wantzel." Pinet says of him: "Endowed with extreme 
vivacity of impressions and with truly universal aptitudes, he 
carried off the prize for a French dissertation and a Latin dis
sertation at a general competition and, the year following 
(1832), entered with first rank the Polytechnic School—a 
double success before unheard of. He studied with inveterate 
zeal German and Scotch philosophers; he threw himself into 
mathematics, philosophy, history, music, and into contro
versy, exhibiting everywhere equal superiority of mind." He 
became élève-ingénieur des Ponts et Chaussées, then ingénieur; 
he was appointed répétiteur about the time when such posi
tions were held by Comte, Transon, Bertrand, Bonnet, Cata
lan, Leverrier, and Delaunay. In 1843 he became examina
teur d'admission. Saint-Venant says of him: "He was 
blameworthy for having been too rebellious to the counsels of 
prudence and of friendship. Ordinarily he worked evenings, 
not lying down until late; then he read, and took only a few 
hours of troubled sleep, making alternately wrong use of 
coffee and opium, and taking his meals at irregular hours until 
he was married. He put unlimited trust in his constitution, 
very strong by nature, which he taunted at pleasure by all 
sorts of abuse. He brought sadness to those who mourn his 
premature death." 

The Royal Society Catalogue of Scientific Papers quotes 
the titles of 18 papers by Wantzel, and of three more which he 
brought out jointly with Saint-Venant. 

General Quintic Insolvable by Radicals. 
As previously stated, Wantzel's most noted scientific 

achievement is found in his paper "De l'impossibilité de 
résoudre toutes les équations algébriques avec des radicaux" 
in the Nouvelles Annales de Mathématiques, volume 4 (1845), 
pages 57-65. The second part of this proof, which involves 
substitution theory, is reproduced in Serret's Algèbre supéri
eure.* 

At the beginning of his article, Wantzel expresses himself 
on the proofs of Abel and Ruffini as follows: "Although his 
(Abel's) demonstration is at bottom exact, it is presented in a 
form too complicated and so vague that it is not generally 
accepted. Many years previous, Ruffini, an Italian geometer, 

* In the fifth edition, 1885, the part proof occurs in vol. II, pp. 512-517. 
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had treated the same question in a manner much vaguer still 
and with insufficient developments, although he had returned 
to this subject many times. In meditating on the researches 
of these two geometers and with the aid of principles which 
we established before,* we have arrived at a form of proof 
which appears so strict as to remove all doubt on this important 
part of the theory of equations/' His previous paper, to 
which reference is made, deals with algebraic incommensur
ables. Wantzel says that the main theorem set forth therein 
had been previously established by Abel and again by Liou-
ville. Thus, Wantzel expresses special indebtedness to Abel 
and Liouville, while to Ruffini he makes acknowledgment 
only in a general way as indicated in the passage quoted above. 
A different estimate of indebtedness has been made more 
recently by H. Burkhardtf and E. Bortolotti.J They claim 
that the proof which goes by the name of Wantzel is essen
tially Ruffini's proof of 1813. Inasmuch as Wantzel's proof 
has been generally accepted as altogether valid, the implica
tion is that Ruffini's proof is equally valid. 

* Nouvelles Annales (Terquem), vol. 2 (1843), pp. 117-127. 
t H. Burkhardt, "Die Anfânge der Gruppentheorie und Paolo Ruffini," 

Zeitsch. ƒ. Mathematik u. Physik, 37. Jahrg., Supplement, Leipzig, 1892, 
pp. 119-159. Burkhardt says (p. 156): "Es braucht wohl kaum noch 
ausdrücklich hervorgehoben zu werden, dass diese Fassung des Unauflös-
barkeitsbeweises sich in alien wesentlichen Punkten mit derj enigen deckt, 
welche als 'Wantzel'sche Modification des AbeFschen Beweises' in den 
Lehrbüchern mitgeteilt zu werden pflegt." Again he says (p. 159), 
"diesen Beweis hat er (Rufiini) nicht nur zuerst durchgeführt, sondern ihn 
auch nach verschiedenen Umarbeitungen auf die einfache Form gebracht, 
welche Wantzel zugeschrieben zu werden pflegt." 

% In the Carteggio di Paolo Ruffini con alcuni scienziati del suo tempo, 
Roma, 1906, p. 15 (303), Bortolotti says in a footnote that Ruffini's 
Riflessioni intorno alia soluzione delle equazioni algebraiche generali, 
Modena, 1813, "contiene la dimostrazione, che per lungo tempo attribuita 
al Wantzel, fu sempre considerata come la più facile e la più convincente 
del teoremadi Ruffini." Bortolotti expresses himself more fully in his dis
course, Influenza dell' Opera Matematica di Paolo Ruffini (Modena), 
1902, p. 42: "E sarebbe anche strano che egli (Abel) accusasse la dimo
strazione di Ruffini di esser troppo complicata; laddove essa è tanto sem-
plice che, quando il Wantzel voile ridurre il teorema a forma facile e plana, 
fu costretto a riprodurre, nelle sue linee generali, la redazione del Ruffini. 
U ingiustizia delle umane cose ha perô voluto, e vuole tuttora, che la dimos
trazione che il Ruffini ha data del teorema da lui stesso scoperto, sia stata 
battezzata col nome di Dimostrazione di Wantzel del Teorema di Abel. 
Quella disgraziata denominazione, introdotta dal Serret nel suo rinomato 
libro di Algèbre supérieure è stata ricopiata di testo in testo fino ai nostri 
giorni: e si trova anche nelP ultimo e più reputato testo di Analisi, quello 
del Picard, uscito nel 1896 quattro anni dopo la piena ed irrefutabile 
dimostrazione data dal Burkhardt délia priorité del Ruffini." 
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The question arises, is Wantzel's proof really the same as 
Ruffini's of 1813? Before answering this query, the question 
must be considered, how much must be included as con
stituting an integral part of the proof? Is only the portion 
involving substitution theory to be taken into account, or is 
the introductory part relating to irrational algebraic functions 
and the general expression for the root form of an algebraically 
solvable equation to be considered as well? Burkhardt and 
Bortolotti seemingly look upon the application of substitution 
theory as the only essential part of the demonstration. But, 
as Netto says, the "proof of the impossibility of an algebraic 
solution of general equations above the fourth degree can 
never be obtained from the theory of substitutions alone." * 

Moreover the state of algebra at the beginning of the 
nineteenth century required that both parts be investigated, 
to establish the impossibility. With RuflBni and Abel, and 
also with Wantzel, the establishment of the general root form 
of algebraically solvable equations was the most difficult and 
serious part which occupied the larger portion of the space 
devoted to the proofs. Both parts received consideration by 
William Rowan Hamilton,f L. Kronecker,J O. Holder, § and 
J. Pierpont.|| Sylow f̂ and Holder point out that there is an 
unproved assumption in the first part of Ruffini's proof. 
Neither Ruffini nor Abel were ever seriously criticized for 
lack of rigor in the strictly substitution theory part, but both 
were criticized on the other parts. Abel committed an error 
in the statement of the theorem relating to an algebraic 
function of the /xth order and mth degree, which was corrected 
by L. Königsberger in 1869.** This error had disturbed 
William Rowan Hamilton, who, in his long articleft "On the 
argument of Abel," declared that the error "renders it difficult 
to judge of the validity of his (AbePs) subsequent reasoning." 
However, J. PierpontJJrightly remarks that this slip "does not 

* E. Netto, Theory of Substitutions, translated by F. N. Cole, Ann 
Arbor, 1892, p. 240. 

fW. R. Hamilton, "On the argument of Abel," Transactions of the 
Royal Irish Society of the year 1889, p. 248. 

t L. Kronecker, Monatsbericht d. k. p. Akademie d. Wiss. zu Berlin, 
1879, p. 205. 

§ Encyklopâdie d. math. Wissensch., 1. Band, p. 504. 
|J J. Pierpont in Monatshefte ƒ. Math. u. Physik, VI (1895), pp. 37-51. 
1i Oeuvres of Abel, edition by Sylow and Lie, II, 1881, p. 293. 
** L. Königsberger, Math. Annalen, vol. 1 (1869), pp. 168, 169. 
t tW. R. Hamilton, loc. cit., p. 248. 
i t J. Pierpont, loc. cit., p. 47. 
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affect in the least the validity of the proof." Abel establishes 
the fundamental theorem, first enunciated by Vandermonde: 
" If an equation is algebraically solvable, then one can always 
give its root such a form that all algebraic functions of which 
it is composed, can be expressed by rational functions of the 
roots of the given equation." This theorem is fundamental 
also in Ruffini's research but he failed to give it convincing 
proof. It is to Abel's credit to have given it a binding demon
stration. Abel gives a classification of algebraic functions 
involving radicals. Wantzel follows Abel, but gives a shorter 
treatment containing only what is needed for his immediate 
purpose. In his paper of 1843, Wantzel deals with the 
properties and classification of radicals and of rational func
tions of radicals that involve root extractions of real but not 
of imaginary "quantities." In his paper of 1845, in which 
the subject is continued and the Ruffini-Abel theorem is 
established, he states that the results previously proved for 
radicaux numériques apply equally to radicaux algébriques 
and proceeds on this assumption. WantzeFs treatment of 
this first part of his proof is not always happy; Serret in his 
Algèbre supérieure prefers to adhere to Abel's exposition. 
There is nothing in Ruffini that directly suggested to Wantzel 
his mode of classifying algebraic functions. On the other 
hand, Wantzel's indebtedness to Abel is strongly evident. 
Nor does Wantzel attempt to conceal this fact. Besides the 
general statement of indebtedness to which we referred earlier, 
Wantzel makes special reference to Abel in two places: one 
where he says that his names for the different classes of radicals 
are pretty nearly the same as AbePs; the other where he states 
that his fundamental theorem on radicals was proved before 
him by Abel and Liouville.* 

The Ruffini publication of 1813, previously referred to, 
consists of viii + 140 pages. The impossibility of an algebraic 
solution of the general equation of a degree higher than the 
fourth is given in Part I; Part II treats of the impossibility 
of solution by the aid of certain transcendental expressions. 
Here again, a comparatively small portion concerns itself 
with the part of the proof involving substitution theory. 
The larger part of the book is devoted to the study of the 
properties of algebraic functions and of a certain class of tran-

* See Wantzel in Nouvelles Annales de Mathématiques, Tome II, Paris, 
1843, pp. 125, 127. 
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scendental functions (espressione trascendente esatta) which, 
among others, includes trigonometric and logarithmic func
tions, but is not sharply defined; nor does the many-valuedness 
of these transcendental functions receive adequate attention. 
The proof of the impossibility of solution by an espressione 
trascendente esatta possesses therefore little value. 

If, for the moment, we leave out of consideration everything 
that Ruffini says about transcendental functions, and confine 
ourselves to his proof of the impossibility of an algebraic solu
tion, we find that, although inconclusive in some important 
details, it must be admitted to his everlasting credit that the 
general outline of his demonstration is correct. The part of 
the proof regarding the form which an algebraic root must 
take (if such an algebraic root exist) is the weak part. Certain 
theorems necessary for his proof are not established, or rest 
upon illusory arguments. Letting P be a rational function 
of the coefficients of the given equation, he introduces the 
first radical Q by the relation Qp = P (p prime), then he lets 
Pi be a rational function of P and Q, and defines the second 
radical R by the relation Rq = Pi (q prime), etc. His general 
root form is xn = P (P, Q, R, S, etc.), where (page 12) P is a 
rational function of P, Q, R, S, • • •. I t is assumed by Ruffini 
that if the equation can be solved by algebra, the form of its 
roots must be the one given here. 

The part of Ruffini's proof involving substitution theory is 
free of fault and is in outline as follows: 

(1) Let P be a symmetric function of the roots xi, x2, • • •, x& 
and unaltered by the cyclic substitution s = (12345). Apply
ing s, s2, • • • to yu where y? = P , gives yx

p = y2
p = • • • = y&p, 

and y2 = /fyi, • • -, y5 = jSfy, yi = 13%; hence /36 = 1. 
(2) P is unaltered by (123) = <r. Applying a-, <r2, • • • to 

yi, we get by the above process ya = yyi, ya+i = y2yi, y% = 732/i 
and 73 = 1, 

(3) The substitutions (12345) (123) = r, r2, • • • applied to 
y 1 give similarly /3675 = 1. Hence 7 = 1 , and yi = ya = ya+i> 

(4) The substitutions (345) = <j>, <£2, • • • applied to yi give 
similarly yc = byl9 yc+x = S22/i, 2/1 = &y\. Hence S3 = 1. 

(5) The substitutions (12345) (345) = TT, TT2, • • • applied to 
2/1 yield /35S5 = 1, hence S = 1 and yi = yc = 2/c+i. Hence 
y\ = ya = yc. Applying a to these yields yi = ya = y2, hence 
|8 = 1 and Q is unaltered by s, s2, • • •. The same conclusion 
can be reached for the algebraic irrationals R, S, • • •, and 
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finally for F. Hence xn = F (P, Q, R, • • • ) is absurd, since 
its right member is unaltered by certain substitutions while 
the left member is altered. 

The part of Wantzel's proof involving substitution theory 
is as follows: 

(1) Let p be a symmetric function of the roots xi, x2, • • • x$, 
and y a rational function of the roots, and yn = p. The trans
position (12) yields y\ = ay, y = ay\\ hence a2 = 1 and 
n = 2; the first radical appearing in the root form is a square 
root. 

(2) In zn = p\ let z be a rational function of the roots 
which is altered by a cyclic substitution of three letters, but 
Pi is unaltered by it. We obtain Zi = az, z2 = azi, z = az2; 
hence a3 = 1 and n — 3. 

(3) Applying to this same z a cyclic substitution of five 
letters, he proves that a5 = 1. But a3 = 1; hence a = 1. 

(4) Hence when the degree of the equation exceeds four, 
z is invariant under a cyclic substitution of three letters. The 
relation between the roots x\ = ^(#i, X2j X$) X4.J #5) must be an 
identical equation. This is impossible since the left member is 
altered by (123) and the right member is not. 

The substitution theory as applied by Wantzel is reminiscent 
of that of Ruffini, yet is far from identical with it. Wantzel 
stands no closer to Ruffini in this second part of the proof than 
he stands to Abel in the first part. It is what one might have 
expected Wantzel to contribute, after "meditating on the 
researches of the two geometers.,, The proofs of Ruffini and 
Wantzel differ altogether in the first part. Hence the claim 
put forth by Burkhardt and Bortolotti, that Wantzel's proof 
is the same as Ruffini's, is wholly unsupported by the facts 
as regards the first part and is too sweeping as regards the 
second part. 

The "Irreducible Case" in Cubics. 
Quite forgotten are the proofs given by Wantzel of three 

other theorems of note, viz., the impossibility of trisecting 
angles, of duplicating cubes, and of avoiding the " irreducible 
case " in the algebraic solution of irreducible cubics. For these 
theorems Wantzel appears to have been the first to advance 
rigorous proofs. To be sure, Paolo Ruffini, in his booklet of 
1813 (pages 54-57), had put forth a proof that the "irreducible 
case" is unavoidable, but in the absence of satisfactory demon-
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stration that the root must take a certain form, it is open to 
objection. Wantzel proves this theorem at the end of his 
paper of 1843, previously referred to. He writes a root of the 
irreducible cubic in the form of an entire radical function of 
the nth kind (espèce), x = A + Bu + • • • + Mum~l, where 
u = -Va, a is a radical function of the (n — l)th kind, while 
A, B, • • •, M may be such functions of the nth. kind but are 
of a degree inferior to x. Roots of imaginary numbers do not 
occur in x. He shows that B may be taken ± 1. Substituting 
for u in x the roots of the irreducible equation um — a = 0, 
he finds that m = 3 or 2. If m = 3 and a3 = 1, he proves 
that 

x + OLXI + o?X2 = do 3u. 

Since, by supposition, x, xi, x%, u are all real, it follows that 
x\ = X2, which is impossible since the given cubic is irreducible. 
He shows that m = 2 is likewise impossible. Hence the 
"irreducible case" cannot be avoided. Nearly half a century 
later proofs were given of this theorem by Mollame (1890), 
Holder (1891), and Kneser (1892). 

Duplication of Cubes and Trisection of Angles. 
These problems are taken up in WantzePs article in Liou-

ville's Journal, volume 2 (1837), pages 366-372, on the "means 
of ascertaining whether a geometric problem can be solved 
with ruler and compasses." He shows first that problems 
solvable by ruler and compasses can be solved algebraically by 
a series of quadratic equations, (S) x? + A^iXi + Bi-i = 0 
(i = 1, 2, • • •, n) where Ao and JSo are rational functions of 
given numbers p, q, • • •, and where Ai and Bi are rational 
functions of xi, Xi-i, • • •, X\, p, q, • • •. Secondly, he shows 
that, if in An-i and 5n_i we substitute in succession the two 
values of xn-\ obtained by solving xn-i

2 + An-2Xn-i + Bn-2 = 0, 
and if thereupon we multiply together the two resulting 
expressions for the left member of xn

2 + An-ixn + -Bn-i = 0, 
we obtain an equation of the fourth degree in xn. Its coeffi
cients are rational functions of xn-2, %n-z, • • •, x\> p, q, • • •. 
Repeating this process by eliminating successively #n_2, •••,#!, 
he obtains one equation of the degree 2n i n Xfi, the coefficients 
of which are rational functions oîp,q, • • •. Thirdly, he shows 
that an equation of the degree 2n, resulting from the least 
possible number of quadratic equations necessary to solve 
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a given problem by ruler and compasses, is irreducible. 
Fourthly, he considers tests for determining whether a pro
posed irreducible equation of the degree 2n can be solved by a 
series of square root extractions. This is done by equating 
the coefficients of the proposed equation with those of the 
general equation of the degree 2n obtained from the system 
(S). If thereby the coefficients of the quadratic equations 
(S) can be obtained by the extraction of square roots, but of 
no higher roots, then the proposed equation can be solved 
in that manner. 

Wantzel then remarks that the equation xz — 2a3 = 0, 
arising in the problem of the duplication of a cube, is irre
ducible, but is not of the degree 2n; hence the cube cannot be 
doubled in volume by a construction with ruler and com
passes. He draws the same conclusion for the equation 
x3 — fx + i« = 0, on which depends the trisection of an 
angle. His own words are: "Cette équation est irréductible 
si elle n'a pas de racine qui soit une fonction rationnelle de a 
et c'est ce qui arrive tant que a reste algébrique; ainsi le 
problème ne peut être résolu en général avec la règle et le 
compas. Il nous semble qu'il n'avait pas encore été démontré 
rigoureusement que ces problèmes, si célèbres chez les anciens, 
ne fussent pas susceptibles d'une solution par les constructions 
géométriques auxquelles ils s'attachaient particulièrement." 

Saint-Venant admits Wantzel's claim of priority and adds 
that somewhat later Charles Sturm simplified the proofs but 
did not publish them. So far as now known, Wantzel's 
priority in publishing detailed, explicit and full proofs of the 
impossibility of doubling cubes, of trisecting angles and of 
avoiding the "irreducible case" in the cubic is incontested. 

COLORADO COLLEGE, 
COLORADO SPRINGS. 


